o N

A Formal Approach to Probabilistic
Termination

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.1/30

Contents

Introduction

Modelling Probabilistic Programs
Probabilistic While Loop
Random Walk

Conclusion

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.2/30

Introduction

o N

e Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

1f length elements <= 1 then elements

else
let
val pivot = choose_pivot elements
val (left, right) = partition pivot elements
in

quicksort left @ [pivot] @ qgquicksort right

end;

e Usually O(nlogn) comparisons, unless choice of pivot
Interacts badly with data.

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.3/30

Introduction

o N

e Example of bad behaviour when pivot is first element:

input: (5, 4, 3, 2, 1]
pivot 5: [4, 3, 2, 1]1--5--[]
pivot 4: (3, 2, 1]-——4——1]
pivot 3: [2, 1]1--3--[]

pivot 2: [1]--2--1[]

output: [1, 2, 3, 4, 5]

e Lists in reverse order take O(n?) comparisons.
e So do lists that are in the right order!

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.4/30

Introduction

e Solution: Introduce randomization into the algorithm
itself.

e Pick pivots uniformly at random from the list of
elements.

e Every list has exactly the same performance profile:

Expected number of comparisons is O(nlogn).

Small class C c S, of lists with guaranteed bad
performance has been replaced with a small
probability |C'|/n! of bad performance on any input.

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.5/30

Introduction

e Broken procedure for choosing a pivot:

fun choose_pivot elements =
1f length elements = 1 orelse coin_flip ()
then hd elements

else choose_pivot (tl elements);

e Not a uniform distribution when length of elements > 2.

o Actually reinstates a bad class of input lists taking O(n?)
(expected) comparisons.

e Would like to verify probabilistic programs in a theorem
prover.

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.6/30

Introduction

o N

e The (broken) choose pivot program is guaranteed to
terminate within [ength(elements) coin-flips.

e The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

3) e The backward loops
0 i introduce the possibility
of looping forever.

N
-] e Butthe probability of this
33 happening is 0.
6 e Probabilistic termination:

the program terminates
with probability 1. J

Introduction

-

e Probabilistic termination is more expressive than
guaranteed termination.

e No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:
Uniform(3): choosing one of 0, 1,2 each with
probability .
Geometric(3): choosing n € N with probability (3)"*.
The index of the first head in a sequence of coin-flips.
e But how can probabilistic termination be modelled in a
logic of total functions?
What should Geometric(3) return for the all-tails sequence?

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.8/30

-

Contents

e Introduction

. Modelling Probabilistic
Programs

e Probabilistic While Loop
e Random Walk
e Conclusion

Formal Approach to

Probabilistic Termination — Joe Hur

9/30

The HOL Theorem Prover
-

Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOLSS.

_atest release in mid-2002 called HOL4, developed
jointly by Cambridge and Utah.

mplements classical Higher-Order Logic with
Hindley-Milner polymorphism.

Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc. |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.10/30

Verification in HOL

o N

To verity a probabilistic program in HOL.:
e Must be able to formalize its probabilistic specification;
E:P(PB>®), P:&£—-R
e and model the probabilistic program in the logic;
prob_program : N — B~ — {success, failure} x B

e then finally prove that the program satisfies its
specification.

=Vn.P{s | fst (prob_program n s) = failure} < 27"

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.11/30

Modelling Probabilistic Programs
-

e Given a probabilistic ‘function’:

A

fra—p
o Model f with a higher-order logic function
f:ra— B* — 0 x B>

that passes around ‘an infinite sequence of coin-flips.

 The probability that f(a) meets a specification
B : 7 — B can then be formally defined as

P{s| B(fst (f as))}

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.12/30

Modelling Probabilistic Programs

o N

e Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unita = M\s. (a,s)
bind fg = Ms.let (z,58) « f(s)ingazs
coin_flip f g = As. (if shd s then f else g, stl s)

e For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (A z. bind dice (Ay. unit (z +v)))

generates the sum of two dice.

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.13/30

Example: The Binomial(n,) Distribution

-

o Definition of a sampling algorithm for the Binomial(n,)
distribution:

- bit = coin_flip (unit 1) (unit 0)
~ binomial 0 = unit 0 A
Vn.

binomial (suc n) =
bind bit (A z. bind (binomial n) (Ay. unit (z +v)))

e Correctness theorem:

r

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.14/30

~ W, P{s| fst (binomial n) = 1} = <n> (1)"

Contents

Introduction
Modelling Probabilistic Programs

Probabilistic While Loop
Random Walk
Conclusion

Formal Approach to

Probabilistic Termination — Joe Hur 15/30

Probabilistic While Loop

. .

e Consider the following bounded probabilistic while loop
= Ve, b,n,a.
while cutcb0a =unita A

while_cut ¢ b (suc n) a =
if ¢(a) then bind (b(a)) (while_cut ¢ b n) else unit a

a : « IS the loop state.

c: a — B is the loop condition.

b:a— B® — a x B* is the loop body.

n : N Is a cut-off parameter, ensuring that the loop
always terminates within n iterations.

e The bounded while loop is guaranteed to terminate.

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.16/30

Probabilistic While Loop

o N

e We can now define an unbounded probabilistic while
loop as follows:

- Ve, ba,s.
while cb a s =
if 3n. —c(fst (while_cut cbn a s)) then
while _cut cb
(minimal (An. —c(fst (while_cutcbnas)))) as

else arb

e For a given starting state (¢, b, a, s):
If the loop would naturally terminate after n iterations
then it does so;

L otherwise it returns the arbitrary value arb. J

A Formal Approach to Probabilistic Termination — Joe Hurd — p.17/30

Probabilistic While Loop

o N

e We can advance the probabilistic while loop:

- Ve b,a.
while c b a =
if ¢(a) then bind (b(a)) (while ¢ b) else unit a

e For a desirable independence property to hold, the
following must be true of ¢ and b:

Va.V*s. dn. —c(fst (while_cut cbn a s))

Vis. p(s) means {s | ¢(s)} € &€ N P{s | o(s)} = 1.
e Can see this as a probabilistic termination condition.
Equivalent to the 0-1 law of Hart, Sharir and Pnueli.

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.18/30

Example: The Uniform(3) Distribution

o N

e First make a raw definition of unif3:

= unif3 =
while (An. n = 3)
(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

e Next prove unif3 satisfies probabilistic termination.

e Then independence must follow, and we can use this to
derive a more elegant definition of unif3:

= unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

e The correctness theorem also follows:

L - V. P{s|fst (unif3 s) = n} =if n < 3 then i else 0 J

A Formal Approach to Probabilistic Termination — Joe Hurd — p.19/30

Contents

Introduction
Modelling Probabilistic Programs
Probabilistic While Loop

Random Walk

Conclusion

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.20/30

Random Walk
-

e A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point O.

heaMils
° ° ° ° ° ° ° ° ° ° ° °
0 | -1 1 1+l n
/t HOME /I\ /t PUB
flips coin

e Will the drunk always get home?

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.21/30

Random Walk

o N

e We can formalize the random walk as a probabilistic
program:
= Vn. lurch n = coin_flip (unit (n 4+ 1)) (unit (n — 1))
= VYV f,b,a, k. cost fb(a,k)=Dbind (b(a)) (Aa'. unit (a’, f(k)))
- Vn, k.
walk n k =
bind (while (A (n,_). 0 < n) (cost suc lurch) (n,k))
(A(_, k). unit k)

o “Will the drunk always get home?”
IS equivalent to
L “Does walk satisfy probabilistic termination?” J

A Formal Approach to Probabilistic Termination — Joe Hurd — p.22/30

Random Walk
-

Perhaps surprisingly, the drunk does always get home.

To see this, let 7;; be the probability that a drunk
starting at point i will eventually hit point ;.

The first property of m;; that we prove is
Translation Invariance: = Vi, j,n. Tij = T(i10)(j+n)
This is used to prove the all-important

Multiplicative Property: + Vi. mjg = 77%0

So if T = 1, then probabilistic termination is assured:
the drunk gets home from every pub.

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.23/30

Random Walk
-

By the definition of the random walk, we have:
0 = %7@0 + %Woo
Applying the Multiplicative Property again:
™o = 3770 + 3
And this can be rearranged to
(m10— 1) =0
The only solution of this equation is:

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.24/30

Random Walk

o N

e As usual, independence is a consequence of
probabilistic termination.

e This allows us to derive a more natural definition:

- Vn, k.
walk n k =

if n =0 then unit £ else
coin_flip (walk (n+1) (k+1)) (walk (n—1) (k+1))

e And prove some neat properties:

= Vn, k. V's. even (fst (walk n k s)) = even (n + k)

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.25/30

Random Walk
-

Can also extract walk to ML and simulate it.
Use high-quality random bits from /dev/random.

A typical sequence of results from random walks
starting at level 1:

57,1,7,173,5,49,1,3,1,11,9,9,1,1,1547,27,3,1,1,1, . ..

Record breakers:
34th simulation yields a walk with 2645 steps
135th simulation yields a walk with 603787 steps
664th simulation yields a walk with 1605511 steps

Expected number of steps to get home is infinite!

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.26/30

Contents

Introduction

Modelling Probabilistic Programs
Probabilistic While Loop
Random Walk

Conclusion

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.27/30

Conclusion

-

e Fixing on coin-flips creates a distinction between
guaranteed termination and probabilistic termination.

Functions that are guaranteed to terminate have
better logical properties, and can bound the number
of random bits that they will require.

But many interesting algorithms require probabilistic
termination to be defined.

e Could define some program schemes to help prove
probabilistic termination.

But there will always be programs such as the
random walk that don't fit into any scheme because
their termination argument is too subtle.

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.28/30

Future Work
| -

e Directly support recursive definitions of probabilistic
programs (TFL-like behaviour):

User inputs intended recursion equations.
System makes a definition.

Sytem derives the recursive equations and induction
theorem, with probabilistic termination condition as
an assumption.

User proves this condition (perhaps using auxiliary
function).

o |

A Formal Approach to Probabilistic Termination — Joe Hurd — p.29/30

Related Work

e Semantics of Probabilistic Programs, Kozen, 1979.

e Termination of Probabilistic Concurrent Processes,
Hart, Sharir and Pnueli, 1983.

e Probabilistic predicate transformers, Morgan, Mclver,
Seidel and Sanders, 1994—

Notes on the Random Walk: an Example of
Probabilistic Temporal Reasoning, 1996

Proof Rules for Probabilistic Loops, Morgan, 1996

|

A Formal Approach to Probabilistic Termination — Joe Hurd — p.30/30

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Contents
	The HOL Theorem Prover
	Verification in HOL
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Contents
	Probabilistic While Loop
	Probabilistic While Loop
	Probabilistic While Loop
	Example: The $Uniform {3}$ Distribution
	Contents
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Contents
	Conclusion
	Future Work
	Related Work

