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Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

The following elements are now in place:

A formal specification of elliptic curve operations derived from
mathematics (Hurd, Cambridge). This talk!
A compiler from higher order logic functions to a low level
assembly language (Slind, Utah).
A very high fidelity model of the ARM instruction set derived
from a processor model (Fox, Cambridge).
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Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code
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Assumptions and Guarantees

Assumptions that must be checked by humans:

Specification: The formalized theory of elliptic curve
cryptography is faithful to standard mathematics. This talk!
Model: The formalized ARM machine code is faithful to the
real world execution environment.

Guarantee provided by formal methods:

The resultant block of ARM machine code faithfully
implements an elliptic curve cryptographic algorithm.
Functional correctness + a security guarantee.

Of course, there is also an implicit assumption that the HOL4
theorem prover is working correctly.
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Assurance of the Specification

How can evidence be gathered to check whether the formal
specification of elliptic curve cryptography is correct?

1 Comparing the formalized version to a standard mathematics
textbook.

2 Deducing properties known to be true of elliptic curves.

3 Deriving checkable calculations for example curves.

This talk will illustrate all three methods.
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Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.
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Elliptic Curve Cryptography: More Secure?

This table shows equal security key sizes:

standard elliptic curve

1024 bits 173 bits
4096 bits 313 bits

But. . . there has been less theoretical effort made to attack
elliptic curve cryptosystems.
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Elliptic Curve Cryptography: A Comparison

Standard Public Key Cryptography

Needed: a large prime p and a number g .

Operation: multiplication mod p.

Power operation: k 7→ gk mod p.

Elliptic Curve Cryptography

Needed: an elliptic curve E and a point p.

Operation: adding points on E .

Power operation: k 7→ p + · · ·+ p (k times).
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Cryptography Based On Groups

The Discrete Logarithm Problem over a group G tests the
difficulty of inverting the power operation:

Given x , y ∈ G , find a k such that xk = y .

The difficulty of this problem depends on the group G .

For some groups, such as integer addition modulo n, the
problem is easy.

For some groups, such as multiplication modulo a large prime
p (a.k.a. standard public key cryptography), the problem is
difficult.

Warning: the number field sieve can solve this in
sub-exponential time.
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ElGamal Encryption (1)

The ElGamal encryption algorithm can use any instance g x = h of
the Discrete Logarithm Problem.

1 Alice obtains a copy of Bob’s public key (g , h).

2 Alice generates a randomly chosen natural number
k ∈ {1, . . . , ]G − 1} and computes a = gk and b = hkm.

3 Alice sends the encrypted message (a, b) to Bob.

4 Bob receives the encrypted message (a, b). To recover the
message m he uses his private key x to compute

ba−x = hkmg−kx = g xk−xkm = m .
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ElGamal Encryption (2)

Formalize the ElGamal encryption packet that Alice sends to Bob.

Constant Definition

elgamal G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m)

This follows the algorithm precisely.
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ElGamal Encryption (3)

Prove the theorem that Bob can decrypt the ElGamal encryption
packet to reveal the message (assuming he knows his private key).

Theorem

` ∀G ∈ Group. ∀g h m ∈ G.carrier. ∀k x.
(h = group_exp G g x) =⇒
(let (a,b) = elgamal G g h m k in
G.mult (G.inv (group_exp G a x)) b = m)

This diverges slightly from the textbook algorithm by having Bob
compute a−xb instead of ba−x , but results in a stronger theorem
since the group G does not have to be Abelian.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 17 / 52



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Polynomial Normalization Summary

Talk Plan

1 Assurance Overview

2 Elliptic Curve Cryptography

3 Formalized Elliptic Curves

4 Polynomial Normalization

5 Summary

Joe Hurd Formally Verifying Elliptic Curve Cryptography 18 / 52



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Polynomial Normalization Summary

Formalization in HOL4

Formalized theory of elliptic curves mechanized in the HOL4
theorem prover.

Currently about 4500 lines of ML, comprising:

3500 lines of definitions and theorems; and
1000 lines of custom proof tools.

Complete up to the theorem that elliptic curve arithmetic
forms an Abelian group.

Formalizing this highly abstract theorem will add evidence
that the specification is correct. . .

. . . but is anyway required for the formal verification of elliptic
curve cryptographic operations.
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Source Material

The primary way to demonstrate that the specification of
elliptic curve cryptography is correct is by comparing it to
standard mathematics.

The definitions of elliptic curves, rational points and elliptic
curve arithmetic that we present come from the source
textbook for the formalization (Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel Smart.)

A guiding design goal of the formalization is that it should be
easy for an evaluator to see that the formalized definitions are
a faithful translation of the textbook definitions.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 20 / 52
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Elliptic Curves

An elliptic curve over the reals is the set of points (x,y)
satisfying an equation of the form

E : y2 = x3 + ax + b .

Despite the name, they don’t look like ellipses!

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

Elliptic curves are used in number theory; Wiles proved
Fermat’s Last Theorem by showing that the elliptic curve

y2 = x(x − an)(x + bn)

generated by a counter-example an + bn = cn cannot exist.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 21 / 52
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The Elliptic Curve y 2 = x3 − x
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The Elliptic Curve y 2 = x3 − x : Addition
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The Elliptic Curve y 2 = x3 − x : Negation
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Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Formally Verifying Elliptic Curve Cryptography 25 / 52
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Negation of Elliptic Curve Points (2)

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

“− P1 = (x1,−y1 − a1x1 − a3)”

Joe Hurd Formally Verifying Elliptic Curve Cryptography 26 / 52
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Negation of Elliptic Curve Points (3)

The curve case function makes it possible to define functions on
elliptic curve points by separately treating the ‘point at infinity’ O
and the other points (x , y):

Theorem
` ∀e ∈ Curve. ∀z f.

(curve_case e z f (curve_zero e) = z) ∧
∀x y. curve_case e z f (affine e.field [x; y]) = f x y

Joe Hurd Formally Verifying Elliptic Curve Cryptography 27 / 52
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Negation of Elliptic Curve Points (4)

Negation maps points on the curve to points on the curve.

Theorem

` ∀e ∈ Curve. ∀p ∈ curve_points e.
curve_neg e p ∈ curve_points e

Joe Hurd Formally Verifying Elliptic Curve Cryptography 28 / 52
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Verified Elliptic Curve Calculations

It is often desirable to derive calculations that provably follow
from the definitions.

Can be used to sanity check the formalization,
or provide a ‘golden’ test vector.

A custom proof tool performs these calculations.

The tool mainly consists of unfolding definitions in the correct
order.
The numerous side conditions are proved with predicate
subtype style reasoning.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 29 / 52
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Verified Calculations: Elliptic Curves Points

Use an example elliptic curve from a textbook exercise (Koblitz,
1987).

Example
ec = curve (GF 751) 0 0 1 750 0

Prove that the equation defines an elliptic curve and that two
points given in the exercise lie on the curve.

Example
` ec ∈ Curve

` affine (GF 751) [361; 383] ∈ curve_points ec

` affine (GF 751) [241; 605] ∈ curve_points ec
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Verified Calculations: Elliptic Curve Arithmetic

Perform some elliptic curve arithmetic calculations and test that
the results are points on the curve.

Example
` curve_neg ec (affine (GF 751) [361; 383]) =

affine (GF 751) [361; 367]

` affine (GF 751) [361; 367] ∈ curve_points ec

` curve_add ec (affine (GF 751) [361; 383])

(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469]

` affine (GF 751) [680; 469] ∈ curve_points ec

` curve_double ec (affine (GF 751) [361; 383]) =

affine (GF 751) [710; 395]

` affine (GF 751) [710; 395] ∈ curve_points ec

Doing this revealed a typo in the formalization of point doubling!
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The Elliptic Curve Group

The (current) high water mark of the HOL4 formalization of
elliptic curves is the ability to define the elliptic curve group.

Constant Definition
curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |>

Creating a mechanized proof that it actually is a group is ongoing,
using computer algebra techniques to normalize the large
polynomials that result.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 32 / 52



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Polynomial Normalization Summary

Talk Plan

1 Assurance Overview

2 Elliptic Curve Cryptography

3 Formalized Elliptic Curves

4 Polynomial Normalization

5 Summary

Joe Hurd Formally Verifying Elliptic Curve Cryptography 33 / 52



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Polynomial Normalization Summary

Computer Algebra Systems and Theorem Provers

Computer algebra systems: Mathematica, Maple, etc.

(Interactive) theorem provers: HOL, Isabelle, etc.

Both process mathematical expressions, and can calculate
either with numbers or symbolic terms.

Both can be used to aid mathematicians:

Computer algebra systems are routinely used for testing
conjectures at an early stage.
Theorem provers offer a gold standard of proof; especially
important in cases where a purported proof is too long to be
checked by humans (e.g., the four colour theorem, Kepler’s
conjecture).
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Complementary Differences

Speed
HOL is implemented in Standard ML, Mathematica in “an
object oriented variant of C”.
LCF style theorem provers impose a performance penalty: even
term construction often requires object logic type checking.
Rewriting cannot compete with specialized algorithms.
Example: polynomial arithmetic (we’ll see this later).

Reliability
Most theorem provers emphasize logical soundness.
Most computer algebra systems will cut corners.
Example: when integrating xn most computer algebra systems
will return xn+1/(n + 1), but this is wrong for n = −1.
Counterexample: Michael Beeson’s MathXPert system for
teaching students.
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Another Difference

Usability
Computer algebra systems are task-oriented, and are generally
fully automatic.
Theorem provers support the task of interactive proof, but
inexperienced users easily get stuck.
Is this a failure of theorem prover design, or does it just reflect
the greater complexity of the task?
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Computer Algebra Techniques in Theorem Proving

1 Use a computer algebra system as an oracle.

Needs careful handling to avoid unsoundness.

2 Use the computer algebra system to compute a witness for
the problem, and then verify it in the theorem prover.

Sound, but not all problems fit into the model.

3 Implement computer algebra techniques as derived rules.

Sound, covers all problems, but might be inefficient.

4 Implement computer algebra algorithms and data structures
as HOL functions, prove them correct and execute them in
the theorem prover.

Sound and efficient (same complexity), but very hard.
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Combination Projects

Using the categories of the previous slide:

1 OpenMath, MathML, MathWeb, and more
Theorema (Buchberger et. al.) & Analytica (Clarke et. al.)
Coding theory formalization (Ballarin & Paulson)

2 Primality certificates (Harrison & Théry, Caprotti)

3 Computer algebra techniques in HOL Light (Harrison)
Computer algebra system in HOL Light (Kaliszyk & Wiedijk)
Abstract algebra (the rest of this talk)

4 Buchberger’s algorithm (Théry)
Cylindrical Algebraic Decomposition (Mahboubi)

For many others look at the Calculemus conference proceedings.
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3 Computer algebra techniques in HOL Light (Harrison)
Computer algebra system in HOL Light (Kaliszyk & Wiedijk)
Abstract algebra (the rest of this talk)

4 Buchberger’s algorithm (Théry)
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Case Study: Point Doubling

Adding a point on the curve to itself results on a point on the
curve:

Goal

∀e ∈ Curve. ∀p ∈ curve_points e.
curve double e p ∈ curve points e

(13 symbols)
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Case Study: Point Doubling

Stage 1: Expand definition of curve equation and point doubling

Goal
y’ ** 2 + e.a1 * x’ * y’ + e.a3 * y’ =

x’ ** 3 + e.a2 * x’ ** 2 + e.a4 * x’ + e.a6

------------------------------------

0. e ∈ Curve

1. x ∈ e.field.carrier

2. y ∈ e.field.carrier

3. d ∈ field_nonzero e.field

4. l = (3 * x ** 2 + 2 * e.a2 * x + e.a4 - e.a1 * y) / d

5. m = (~(x ** 3) + e.a4 * x + 2 * e.a6 - e.a3 * y) / d

6. x’ = l ** 2 + e.a1 * l - e.a2 - 2 * x

7. y’ = ~(l + e.a1) * x’ - m - e.a3

8. d = 2 * y + e.a1 * x + e.a3

9. y ** 2 + e.a1 * x * y + e.a3 * y =

x ** 3 + e.a2 * x ** 2 + e.a4 * x + e.a6

(347 symbols)
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Case Study: Point Doubling

Stage 2: Expand local definitions of all variables except the
denominator d .

The goal is now of the form

〈polynomial〉 [x , y ] = 0 =⇒ 〈rational function〉 [x , y , d ] = 0

(1,445 symbols)

Joe Hurd Formally Verifying Elliptic Curve Cryptography 41 / 52



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Polynomial Normalization Summary

Case Study: Point Doubling

Stage 3: Eliminate the division by d by lifting it to the top level
and then expand the definition of d .

The goal is now of the form

〈polynomial〉 [x , y ] = 0 =⇒ 〈polynomial〉 [x , y ] = 0

(2,690 symbols)

Optimization: When lifting a/b + c/d , must compute the
polynomial gcd of b and d to keep the resulting term size down.
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Elliptic Curve Gröbner Basis

Want to replace the elliptic curve polynomial with a set of
normalizing rewrites: a Gröbner basis.

This is a trivial case of Buchberger’s Algorithm.

Give x a larger weight than y and write the equation as

x3 = −a6 + a3y + y2 − a4x + a1xy − a2x
2 (∗)

Multiply everything out, replacing

xn = x3xn−3 (n ≥ 3)

and reducing x3 with the simplifying rewrite (∗) above.
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Elliptic Curve Gröbner Basis

Optimization: Precompute

xn = 〈polynomial〉 [x , y ]

for all powers of n that are needed, simplifying the right hand
side so that it has no powers of x larger than 2.

For the point doubling running example, x9 is needed.

The right hand sides can get quite large: x9 ‘simplifies’ to a
term with 5,000 symbols.
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Case Study: Point Doubling

Stage 4: Replace the elliptic curve polynomial with the normalizing
rewrites x i = · · · .

The goal is now of the form

〈rewrites〉 =⇒ 〈polynomial〉 [x , y ] = 0

(15,573 symbols)
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Case Study: Point Doubling

Stage 5: Multiply out the polynomial, and reduce using the
normalizing rewrites. Finally cancel terms to obtain the trival goal

0 = 0

That’s the theory, anyway. Unfortunately, in practice the
normalization takes way too long.

(>300,000 symbols)
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Simple Polynomial Normalization

Even though 300,000 symbols is too much for the HOL
theorem prover, it isn’t a big problem for a computer algebra
system.

Would like a simple polynomial normalization algorithm.

Today will be used as an ML oracle.
One day could be formalized in HOL and proved correct.
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Simple Polynomial Normalization

Consider the following data structure for polynomials:

Type Definition

poly = Var of string
| Sum of (poly,int) finite_map
| Prod of (poly,int) finite_map

Example: (2x + 3)6 is represented as

Prod {Sum {Var x 7→ 2, Prod {} 7→ 3} 7→ 6}

Note that numbers don’t need a special constructor.
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Simple Polynomial Normalization

Simple normalization rules:

Sum ({p 7→ 0} ∪M) −→ Sum M
Prod ({p 7→ 0} ∪M) −→ Prod M

Sum ({Sum M ′ 7→ n} ∪M) −→ Sum ((n ∗M ′) ∪M)
Prod ({Prod M ′ 7→ n} ∪M) −→ Prod ((n ∗M ′) ∪M)

One complicated normalization rule:

Prod ({Sum S 7→ n} ∪ P) −→ Sum (Sn ∗ P)

where Sn is the multinomial

(x1 + · · ·+ xm)n =
∑

k1,...,km

(
n

k1, . . . , km

)
xk1
1 · · · xkm

m
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Simple Polynomial Normalization

These rules are sufficient to normalize polynomials.

Though simple, they are efficient enough to prove the point
doubling theorem in just a few seconds.

Notice that the bulk of the work is being done by the data
structure, not the algorithm.

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified. Show
me your tables, and I won’t usually need your
flowcharts; they’ll be obvious. [Brooks, 1975]
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Summary

This talk has described a theory of elliptic curve cryptography
mechanized in the HOL4 theorem prover.

Assurance is needed: the formalized theory will be used to
write specifications for verifying ARM implementations of
elliptic curve cryptography.

There’s still work to be done combining computer algebra
techniques with high assurance theorem provers.

Joe Hurd Formally Verifying Elliptic Curve Cryptography 52 / 52


	Assurance Overview
	Elliptic Curve Cryptography
	Formalized Elliptic Curves
	Polynomial Normalization
	Summary

