
Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Proof Pearl: The Termination Analysis of
TERMINATOR

Joe Hurd

Computing Laboratory
University of Oxford

TPHOLs 2007
Monday 10 September 2007

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 1 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Talk Plan

1 Introduction

2 Formalizing TERMINATOR

3 Correctness Proof

4 Verifying Optimizations

5 Summary

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 2 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

TERMINATOR

If a Windows device driver goes into an infinite loop, the
whole computer can hang.

TERMINATOR is a static analysis tool developed by
Microsoft Research to prove termination of device drivers,
typically thousands of lines of C code.

It works by modifying the program to transform the
termination problem into a safety property, which is then
proved by the SLAM tool.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 4 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Transforming Termination to a Safety Property

Given a program location l and well-founded relations R1, . . . ,Rn

between program states at location l , insert

already_saved_state := false;

at the start of the program, and the following code just before l :

Code

if (already_saved_state) {
if ¬(R1 state saved_state ∨ · · · ∨ Rn state saved_state) {

error("possible non-termination");

}
}
else if (*) {

saved_state := state;

already_saved_state := true;

}

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 5 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Proving the Safety Property

SLAM is called to verify that the error statement is never
executed.

This guarantees that between the ith and jth time that
program location l is reached, the state goes down in at least
one of R1, . . . ,Rn.

E.g., suppose R1 is , R2 is and R3 is :

If this is true at all program locations it is possible to conclude
that the program must always terminate. This Proof Pearl!

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 6 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Constructing Well-Founded Relations

The choice of well-founded relations is irrelevant for the
correctness proof.

TERMINATOR first calls SLAM with no relations.

This proof will succeed if the program location is executed at
most once.

If the proof fails, SLAM will provide a counterexample
program trace.

An external tool heuristically synthesizes a well-founded
relation that would eliminate the counterexample trace.

This is added to the set of relations, and SLAM is called again.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 7 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

TERMINATOR Example (I)

Code

unsigned int A (unsigned int m, unsigned int n) {
/* Ackermann’s function

[Zum Hilbertschen Aufbau der reellen Zahlen, 1928] */
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

}

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 8 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

TERMINATOR Example (II)

Code

unsigned int A (unsigned int m, unsigned int n) {
/* No relations
*/
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

}

SLAM Says: Counterexample trace (1, 0) → (0, 1)
Relation Synthesizer Says: R (m′, n′) (m, n) ≡ m′ < m

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 9 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

TERMINATOR Example (III)

Code

unsigned int A (unsigned int m, unsigned int n) {
/* R0 (m′, n′) (m, n) ≡ m′ < m
*/
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

}

SLAM Says: Counterexample trace (1, 1) → (1, 0)
Relation Synthesizer Says: R (m′, n′) (m, n) ≡ n′ < n

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 10 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

TERMINATOR Example (IV)

Code

unsigned int A (unsigned int m, unsigned int n) {
/* R0 (m′, n′) (m, n) ≡ m′ < m

R1 (m′, n′) (m, n) ≡ n′ < n */
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

}

SLAM Says: Proved
TERMINATOR Says: Terminating

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 11 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Programs

Model programs as a state transition system with an explicit
program counter.

Type Definition

(’state,’location) program ≡
<| states : ’state → bool;

location : ’state → ’location;

initial : ’state → bool;

transition : ’state → ’state → bool |>

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 13 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Well-Formed Programs

Well-formed programs have a finite text and stay within their state
space.

Constant Definition

programs ≡
{ p |

finite (locations p) ∧
p.initial ⊆ p.states ∧
∀s, s ′. p.transition s s ′ =⇒ s ∈ p.states ∧ s ′ ∈ p.states }

where locations p ≡ image p.location p.states.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 14 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Terminating Programs

Define the set of program traces.

Constant Definition

traces p ≡ { t | t0 ∈ p.initial ∧ ∀i . p.transition ti ti+1 }

Terminating programs have no infinite traces.

Constant Definition

terminates p ≡ ∀t ∈ traces p. finite t

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 15 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

The TERMINATOR Program Analysis (I)

Constant Definition

terminator property at location p l ≡
∃R, n.

(∀k ∈ {0, . . . , n − 1}. well founded (R k)) ∧
∀t ∈ traces p. ∀xi < xj ∈ trace at location p l t.

∃k ∈ {0, . . . , n − 1}. R k xj xi

where trace at location p l t ≡ filter (λs. p.location s = l) t.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 16 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

The TERMINATOR Program Analysis (II)

Constant Definition

terminator property p ≡
∀l ∈ locations p. terminator property at location p l

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 17 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Deducing Termination

Recall the example with three well-founded relations,
where R1 is , R2 is and R3 is :

Why should such a trace necessarily be finite?

Answer: Find a subtrace where all states are connected by a single
well-founded relation.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 19 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Ramsey Theory To The Rescue

Named for Frank Plumpton Ramsey (1903–1930).

A Cambridge mathematician who worked in logic, economics
and probability.
He was Wittgenstein’s Ph.D. supervisor!

Ramsey theory is about “finding order in chaos”.

Ramsey created his theorem to prove a result in logic.
[On a problem of formal logic, 1930]

It has been extended to many applications, e.g., high
dimensional noughts and crosses.
Paul Erdős used Ramsey Theory to tempt promising young
mathematicians into studying combinatorics.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 20 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Ramsey’s Theorem (Infinite Graph Version)

Every infinite graph has an infinite subgraph that is either
complete or empty:

Theorem

` ∀V ,E .

infinite V =⇒
∃M ⊆ V .

infinite M ∧
((∀i , j ∈ M. i < j =⇒ E i j) ∨
(∀i , j ∈ M. i < j =⇒ ¬E i j))

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 21 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Ramsey’s Theorem (Infinite Version)

Every complete infinite graph edge coloured with finitely many
colours has an infinite monochromatic subgraph:

Theorem

` ∀V ,C , n.

infinite V ∧
(∀i , j ∈ V . ∃k ∈ {0, ..., n − 1}. i < j =⇒ C k i j) =⇒
∃M ⊆ V . ∃k ∈ {0, ..., n − 1}.

infinite M ∧ ∀i , j ∈ M. i < j =⇒ C k i j)

Proof.

Put on your turquoise spectacles.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 22 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Verifying TERMINATOR (I)

At a program location p, colour the edge i < j with colour k if
R k xj xi .

Theorem

` ∀p ∈ programs. ∀l ∈ locations p.

terminator property at location p l =⇒
∀t ∈ traces p. finite (trace at location p l t)

Proof.

Ramsey’s Theorem.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 23 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Verifying TERMINATOR (II)

Any infinite program trace will visit some program location
infinitely often, so deduce the correctness of TERMINATOR.

Theorem

` ∀p ∈ programs. terminator property p =⇒ terminates p

Proof.

By colouring states on the program trace with their location, this
result can be seen as a 1-dimensional Ramsey theorem.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 24 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Optimization 1: Single Relation (I)

If there is only one relation TERMINATOR modifies the program
to simply compare states with previous states, by inserting

already_saved_state := false;

at the start of the program, and the following code just before l :

Code

if (already_saved_state ∧ ¬R state saved_state) {
error("possible non-termination");

}
saved_state := state;

already_saved_state := true;

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 26 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Optimization 1: Single Relation (II)

To account for this optimization, the result of the TERMINATOR
program analysis must be weakened to:

Constant Definition

terminator property at location p l ≡
(∃R.

well founded R ∧
∀t ∈ traces p. ∀xi , xi+1 ∈ trace at location p l t. R xi+1 xi ) ∨

[. . . old definition of terminator property at location p l. . . ]

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 27 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Optimization 2: Cut Sets

TERMINATOR finds well-founded relations only at a cut set of
program locations.

Constant Definition

cut sets p ≡
{ L | L ⊆ locations p ∧
∀t ∈ traces p.

infinite t =⇒ ∃l ∈ L. infinite (trace at location p l t)}

Being a cut set is a semantic property, and as hard to prove as
termination.

In practice, choose a set containing locations at the start of
all loops and functions that are called (mutually) recursively.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 28 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Optimized TERMINATOR Program Analysis

The optimized TERMINATOR program analysis guarantees:

Constant Definition

terminator property p ≡
∃C ∈ cut sets p. ∀l ∈ C . terminator property at location p l

But the same correctness theorem is still true.

Theorem

` ∀p ∈ programs. terminator property p =⇒ terminates p

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 29 / 31



Introduction Formalizing TERMINATOR Correctness Proof Verifying Optimizations Summary

Summary

This talk has presented a formal verification of the
termination argument relied on by TERMINATOR.

The model of programs used is the simplest one that can
verify the termination argument.

The next step would be to add some program structure:

the initial program transformation could be represented;
cut sets could be defined syntactically; and
more TERMINATOR optimizations could be verified.

Joe Hurd Proof Pearl: The Termination Analysis of TERMINATOR 31 / 31


	Introduction
	Formalizing TERMINATOR
	Correctness Proof
	Verifying Optimizations
	Summary

