
A Formal Approach to Probabilistic
Termination

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

A Formal Approach to Probabilistic Termination – Joe Hurd – p.1/30

Contents

• Introduction
• Modelling Probabilistic Programs

• Probabilistic While Loop

• Random Walk

• Conclusion

A Formal Approach to Probabilistic Termination – Joe Hurd – p.2/30

Introduction

• Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

if length elements <= 1 then elements

else

let

val pivot = choose_pivot elements

val (left, right) = partition pivot elements

in

quicksort left @ [pivot] @ quicksort right

end;

• Usually O(n log n) comparisons, unless choice of pivot
interacts badly with data.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.3/30

Introduction

• Example of bad behaviour when pivot is first element:

input: [5, 4, 3, 2, 1]

pivot 5: [4, 3, 2, 1]--5--[]

pivot 4: [3, 2, 1]--4--[]

pivot 3: [2, 1]--3--[]

pivot 2: [1]--2--[]

output: [1, 2, 3, 4, 5]

• Lists in reverse order take O(n2) comparisons.

• So do lists that are in the right order!

A Formal Approach to Probabilistic Termination – Joe Hurd – p.4/30

Introduction

• Solution: Introduce randomization into the algorithm
itself.

• Pick pivots uniformly at random from the list of
elements.

• Every list has exactly the same performance profile:

• Expected number of comparisons is O(n log n).
• Small class C ⊂ Sn of lists with guaranteed bad

performance has been replaced with a small
probability |C|/n! of bad performance on any input.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.5/30

Introduction

• Broken procedure for choosing a pivot:

fun choose_pivot elements =

if length elements = 1 orelse coin_flip ()

then hd elements

else choose_pivot (tl elements);

• Not a uniform distribution when length of elements > 2.

• Actually reinstates a bad class of input lists taking O(n2)
(expected) comparisons.

• Would like to verify probabilistic programs in a theorem
prover.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.6/30

Introduction

• The (broken) choose_pivot program is guaranteed to
terminate within length(elements) coin-flips.

• The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

1

2

3

4

5

6

0

• The backward loops
introduce the possibility
of looping forever.

• But the probability of this
happening is 0.

• Probabilistic termination:
the program terminates
with probability 1.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.7/30

Introduction

• Probabilistic termination is more expressive than
guaranteed termination.

• No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:
• Uniform(3): choosing one of 0, 1, 2 each with

probability 1
3 .

• Geometric(1
2): choosing n ∈ N with probability (1

2)n+1.
The index of the first head in a sequence of coin-flips.

• But how can probabilistic termination be modelled in a
logic of total functions?
• What should Geometric(1

2) return for the all-tails sequence?

A Formal Approach to Probabilistic Termination – Joe Hurd – p.8/30

Contents

• Introduction

• Modelling Probabilistic
Programs
• Probabilistic While Loop

• Random Walk

• Conclusion

A Formal Approach to Probabilistic Termination – Joe Hurd – p.9/30

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release in mid-2002 called HOL4, developed
jointly by Cambridge and Utah.

• Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

• Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

• Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.10/30

Verification in HOL

To verify a probabilistic program in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic program in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the program satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

A Formal Approach to Probabilistic Termination – Joe Hurd – p.11/30

Modelling Probabilistic Programs

• Given a probabilistic ‘function’:

f̂ : α→ β

• Model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

that passes around ‘an infinite sequence of coin-flips.’

• The probability that f̂(a) meets a specification
B : β → B can then be formally defined as

P {s | B(fst (f a s))}

A Formal Approach to Probabilistic Termination – Joe Hurd – p.12/30

Modelling Probabilistic Programs

• Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unit a = λ s. (a, s)

bind f g = λ s. let (x, s′)← f(s) in g x s′

coin_flip f g = λ s. (if shd s then f else g, stl s)

• For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (λx. bind dice (λ y. unit (x+ y)))

generates the sum of two dice.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.13/30

Example: The Binomial(n, 1
2) Distribution

• Definition of a sampling algorithm for the Binomial(n, 1
2)

distribution:

` bit = coin_flip (unit 1) (unit 0)

` binomial 0 = unit 0 ∧
∀n.

binomial (suc n) =

bind bit (λx. bind (binomial n) (λ y. unit (x+ y)))

• Correctness theorem:

` ∀n, r. P {s | fst (binomial n s) = r} =

(
n

r

)(
1
2

)n

A Formal Approach to Probabilistic Termination – Joe Hurd – p.14/30

Contents

• Introduction

• Modelling Probabilistic Programs

• Probabilistic While Loop
• Random Walk

• Conclusion

A Formal Approach to Probabilistic Termination – Joe Hurd – p.15/30

Probabilistic While Loop

• Consider the following bounded probabilistic while loop:

` ∀ c, b, n, a.
while_cut c b 0 a = unit a ∧
while_cut c b (suc n) a =

if c(a) then bind (b(a)) (while_cut c b n) else unit a

• a : α is the loop state.
• c : α→ B is the loop condition.
• b : α→ B∞ → α× B∞ is the loop body.
• n : N is a cut-off parameter, ensuring that the loop

always terminates within n iterations.

• The bounded while loop is guaranteed to terminate.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.16/30

Probabilistic While Loop

• We can now define an unbounded probabilistic while
loop as follows:

` ∀ c, b, a, s.
while c b a s =

if ∃n. ¬c(fst (while_cut c b n a s)) then

while_cut c b

(minimal (λn. ¬c(fst (while_cut c b n a s)))) a s

else arb

• For a given starting state (c, b, a, s):
• if the loop would naturally terminate after n iterations

then it does so;
• otherwise it returns the arbitrary value arb.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.17/30

Probabilistic While Loop

• We can advance the probabilistic while loop:

` ∀ c, b, a.
while c b a =

if c(a) then bind (b(a)) (while c b) else unit a

• For a desirable independence property to hold, the
following must be true of c and b:

∀ a. ∀∗s. ∃n. ¬c(fst (while_cut c b n a s))

• ∀∗s. φ(s) means {s | φ(s)} ∈ E ∧ P {s | φ(s)} = 1.

• Can see this as a probabilistic termination condition.
• Equivalent to the 0-1 law of Hart, Sharir and Pnueli.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.18/30

Example: The Uniform(3) Distribution

• First make a raw definition of unif3:

` unif3 =

while (λn. n = 3)

(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

• Next prove unif3 satisfies probabilistic termination.

• Then independence must follow, and we can use this to
derive a more elegant definition of unif3:

` unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

• The correctness theorem also follows:

` ∀n. P {s | fst (unif3 s) = n} = if n < 3 then 1
3 else 0

A Formal Approach to Probabilistic Termination – Joe Hurd – p.19/30

Contents

• Introduction

• Modelling Probabilistic Programs

• Probabilistic While Loop

• Random Walk
• Conclusion

A Formal Approach to Probabilistic Termination – Joe Hurd – p.20/30

Random Walk

• A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point 0.

n0 1 i−1 i i+1

HOME PUB
flips coin

heads tails

• Will the drunk always get home?

A Formal Approach to Probabilistic Termination – Joe Hurd – p.21/30

Random Walk

• We can formalize the random walk as a probabilistic
program:

` ∀n. lurch n = coin_flip (unit (n+ 1)) (unit (n− 1))

` ∀ f, b, a, k. cost f b (a, k) = bind (b(a)) (λ a′. unit (a′, f(k)))

` ∀n, k.
walk n k =

bind (while (λ (n,_). 0 < n) (cost suc lurch) (n, k))

(λ (_, k). unit k)

• “Will the drunk always get home?”
is equivalent to

“Does walk satisfy probabilistic termination?”

A Formal Approach to Probabilistic Termination – Joe Hurd – p.22/30

Random Walk

• Perhaps surprisingly, the drunk does always get home.

• To see this, let πij be the probability that a drunk
starting at point i will eventually hit point j.

• The first property of πij that we prove is
Translation Invariance: ` ∀ i, j, n. πij = π(i+n)(j+n)

• This is used to prove the all-important
Multiplicative Property: ` ∀ i. πi0 = πi10

• So if π10 = 1, then probabilistic termination is assured:
the drunk gets home from every pub.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.23/30

Random Walk

• By the definition of the random walk, we have:

π10 = 1
2π20 + 1

2π00

• Applying the Multiplicative Property again:

π10 = 1
2π

2
10 + 1

2

• And this can be rearranged to

(π10 − 1)2 = 0

• The only solution of this equation is:

π10 = 1

A Formal Approach to Probabilistic Termination – Joe Hurd – p.24/30

Random Walk

• As usual, independence is a consequence of
probabilistic termination.

• This allows us to derive a more natural definition:

` ∀n, k.
walk n k =

if n = 0 then unit k else

coin_flip (walk (n+1) (k+1)) (walk (n−1) (k+1))

• And prove some neat properties:

` ∀n, k. ∀∗s. even (fst (walk n k s)) = even (n+ k)

A Formal Approach to Probabilistic Termination – Joe Hurd – p.25/30

Random Walk

• Can also extract walk to ML and simulate it.

• Use high-quality random bits from /dev/random.

• A typical sequence of results from random walks
starting at level 1:

57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, . . .

• Record breakers:
• 34th simulation yields a walk with 2645 steps
• 135th simulation yields a walk with 603787 steps
• 664th simulation yields a walk with 1605511 steps

• Expected number of steps to get home is infinite!

A Formal Approach to Probabilistic Termination – Joe Hurd – p.26/30

Contents

• Introduction

• Modelling Probabilistic Programs

• Probabilistic While Loop

• Random Walk

• Conclusion

A Formal Approach to Probabilistic Termination – Joe Hurd – p.27/30

Conclusion

• Fixing on coin-flips creates a distinction between
guaranteed termination and probabilistic termination.
• Functions that are guaranteed to terminate have

better logical properties, and can bound the number
of random bits that they will require.
• But many interesting algorithms require probabilistic

termination to be defined.

• Could define some program schemes to help prove
probabilistic termination.
• But there will always be programs such as the

random walk that don’t fit into any scheme because
their termination argument is too subtle.

A Formal Approach to Probabilistic Termination – Joe Hurd – p.28/30

Future Work

• Directly support recursive definitions of probabilistic
programs (TFL-like behaviour):
• User inputs intended recursion equations.
• System makes a definition.
• Sytem derives the recursive equations and induction

theorem, with probabilistic termination condition as
an assumption.
• User proves this condition (perhaps using auxiliary

function).

A Formal Approach to Probabilistic Termination – Joe Hurd – p.29/30

Related Work

• Semantics of Probabilistic Programs, Kozen, 1979.

• Termination of Probabilistic Concurrent Processes,
Hart, Sharir and Pnueli, 1983.

• Probabilistic predicate transformers, Morgan, McIver,
Seidel and Sanders, 1994–

• Notes on the Random Walk: an Example of
Probabilistic Temporal Reasoning, 1996
• Proof Rules for Probabilistic Loops, Morgan, 1996

A Formal Approach to Probabilistic Termination – Joe Hurd – p.30/30

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Contents
	The HOL Theorem Prover
	Verification in HOL
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Contents
	Probabilistic While Loop
	Probabilistic While Loop
	Probabilistic While Loop
	Example: The $Uniform {3}$ Distribution
	Contents
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Random Walk
	Contents
	Conclusion
	Future Work
	Related Work

