
Lightweight Probability Theory for Verification 1

Lightweight Probability

Theory for Verification

Joe Hurd

University of Cambridge

1. Motivation

2. A Language for Probabilistic Algorithms

3. Formalizing Probability Theory

4. A Uniform Random Number Generator

Joe Hurd University of Cambridge



Lightweight Probability Theory for Verification 2

Motivation

The Miller-Rabin primality test takes a number n

and returns either prime or composite. If n

actually is prime then it is guaranteed to return

prime, and if n is composite then it will return

composite with probability at least one half.

Successive calls are independent, so if n is

composite then s consecutive results of prime

will occur with probability at most 2−s.

How can we specify and verify such an algorithm?

To answer this question, we have created the

following two theories in HOL:

• A language for expressing probabilistic

programs.

• A formalization of (basic) probability theory.

Joe Hurd University of Cambridge



Lightweight Probability Theory for Verification 3

A Language for

Probabilistic Algorithms

The programming language we use is the

language of higher-order logic functions.

We define a type B∞ of infinite boolean

sequences, and model a probabilistic function

f : α→ β

with a corresponding deterministic function

F : α→ B∞ → β × B∞

This method of ‘passing around the

random-number generator’ is also used in pure

functional languages such as Haskell, and allows

an elegant formulation of probabilistic programs

in terms of state transforming monads.

Joe Hurd University of Cambridge



Lightweight Probability Theory for Verification 4

Formalizing

Probability Theory

We build upon Harrison’s construction of the real

numbers; adding ingredients from mathematical

measure theory to allow the essential concepts of

probability and independence to be defined. This

results in a lightweight probability theory.

This leads to an important result:

Thm: For all probabilistic programs constructed

using our monadic primitives (including Haskell

probabilistic programs), the returned value is

independent of the returned sequence.

Note: the converse is not true: λ s.(s0 = s1, stl s)

This indicates how tricky independence can be.

Joe Hurd University of Cambridge



Lightweight Probability Theory for Verification 5

A Uniform Random

Number Generator

We made use of this development to write a

probabilistic function that returned random

numbers in the range 0, 1, . . . , n− 1.

We originally wanted the returned numbers to be

uniformly distributed on the range, but this turns

out to be impossible unless n is a power of two!

We settled for almost-uniform:

n

We pass in an extra parameter t, and the

probability of returning each number in the range

is within 2−t of 1/n.

Joe Hurd University of Cambridge


