
Lightweight Probability Theory for Verification 1

Lightweight Probability

Theory for Verification

Joe Hurd

University of Cambridge

1. Motivation

2. A Language for Probabilistic Algorithms

3. Formalizing Probability Theory

4. A Uniform Random Number Generator

Joe Hurd University of Cambridge



Lightweight Probability Theory for Verification 2

Motivation

The Miller-Rabin primality test takes a number n

and returns either prime or composite. If n

actually is prime then it is guaranteed to return

prime, and if n is composite then it will return

composite with probability at least one half.

Successive calls are independent, so if n is

composite then s consecutive results of prime

will occur with probability at most 2−s.

How can we specify and verify such an algorithm?

To answer this question, we have created the

following two theories in HOL:

• A language for expressing probabilistic

programs.

• A formalization of (basic) probability theory.
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A Language for

Probabilistic Algorithms

The programming language we use is the

language of higher-order logic functions.

We define a type B∞ of infinite boolean

sequences, and model a probabilistic function

f : α→ β

with a corresponding deterministic function

F : α→ B∞ → β × B∞

This method of ‘passing around the

random-number generator’ is also used in pure

functional languages such as Haskell, and allows

an elegant formulation of probabilistic programs

in terms of state transforming monads.
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Formalizing

Probability Theory

We build upon Harrison’s construction of the real

numbers; adding ingredients from mathematical

measure theory to allow the essential concepts of

probability and independence to be defined. This

results in a lightweight probability theory.

This leads to an important result:

Thm: For all probabilistic programs constructed

using our monadic primitives (including Haskell

probabilistic programs), the returned value is

independent of the returned sequence.

Note: the converse is not true: λ s.(s0 = s1, stl s)

This indicates how tricky independence can be.
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A Uniform Random

Number Generator

We made use of this development to write a

probabilistic function that returned random

numbers in the range 0, 1, . . . , n− 1.

We originally wanted the returned numbers to be

uniformly distributed on the range, but this turns

out to be impossible unless n is a power of two!

We settled for almost-uniform:

n

We pass in an extra parameter t, and the

probability of returning each number in the range

is within 2−t of 1/n.
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