
Introduction Combining Theories Packaging Theories Implementation Notes Summary

Packaging Theories of Higher Order Logic

Joe Hurd

Galois, Inc.
joe@galois.com

Theory Engineering Workshop
Tuesday 9 February 2010

Joe Hurd Packaging Theories of Higher Order Logic 1 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Talk Plan

1 Introduction

2 Combining Theories

3 Packaging Theories

4 Implementation Notes

5 Summary

Joe Hurd Packaging Theories of Higher Order Logic 2 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Motivation

Interactive theorem proving is growing up.

It has moved beyond toy examples of mathematics and
program verification.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The CompCert project used the Coq theorem prover to verify
an optimizing compiler from a large subset of C to PowerPC
assembly code.

There is a need for theory engineering techniques to support
these major verification efforts.

Theory engineering is to proving as software engineering is to
programming. “Proving in the large.”

Joe Hurd Packaging Theories of Higher Order Logic 4 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

The OpenTheory Project

The OpenTheory project aims to apply software engineering
principles to the development of higher order logic theories.1

The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner style type variables.

The logic implemented by HOL4, HOL Light and ProofPower.

By focusing on a concrete case study we aim to investigate
the issues surrounding:

Designing theory languages portable across theorem prover
implementations.
Uploading, installing and upgrading theory packages from
online repositories.
Discovering design techniques for reusable theories.
Building a standard library of higher order logic theories.

1OpenTheory was started in 2004 with Rob Arthan.
Joe Hurd Packaging Theories of Higher Order Logic 5 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Definition

A theory Γ ` ∆ of higher order logic consists of:
1 A set Γ of assumption sequents.
2 A set ∆ of theorem sequents.
3 A formal proof that the theorems in ∆ logically derive from

the assumptions in Γ.

Theories can be directly represented as OpenTheory article
files, a format designed to simplify theory import and export
for theorem prover implementations.

This talk will present a language for building up from article
files to theory packages.

Joe Hurd Packaging Theories of Higher Order Logic 6 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Connecting Theories

Note that both the input assumptions and output theorems of
a theory are sequent sets.

We can therefore connect the output theorems of one theory
to satisfy the input assumptions of another:

In this example, some basic theories have been connected
together to produce the compound theory

A ∪ B ∪ CIN ` S ∪ COUT .

Joe Hurd Packaging Theories of Higher Order Logic 8 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Interpretations

A theory Γ ` ∆ can be applied in any context where the
assumptions Γ hold. This is called theory interpretation.

Example: The theory

{id = λx . x} ` {∀x . id x = x}

can be applied in any context with a constant id having the
assumed property.

Constants and type operators can be consistently renamed

(Γ ` ∆)σ = Γσ ` ∆σ

allowing theories to be applied in even more contexts.

Joe Hurd Packaging Theories of Higher Order Logic 9 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

What Can Go Wrong?

When connecting together theories, the connection graph
must not contain any loops!

Theories are representations of proofs, which are directed
acyclic graphs.
In this way proofs are more like combinational circuits than
programs.

A set of theorems must not have incompatible definitions for
the same constant or type operator.

Example: The two theories

{} ` {c = 0} and {} ` {c = 1}

are individually fine, but must never be imported into the same
context.

Joe Hurd Packaging Theories of Higher Order Logic 10 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

A Language for Theories

The following theory language allows article files and theory
packages to be combined into a new theory:

theory ← article "filename";
| { theory* }
| local theory in theory
| interpret { interpretation* } in theory
| import package-instance;

Incompatible definition clashes are prevented by:

Limiting the scope of contexts using the local construct.
Renaming constant and type operators using interpret
blocks.

Joe Hurd Packaging Theories of Higher Order Logic 12 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Instances

An imported package-instance refers to a required theory
package, specified as a package-instance-spec :

package-instance-spec ← require package-instance {
import: package-instance∗

interpret: interpretation∗

package: package-name
}

A list of package-instance-specs specify a connection graph
between theory packages.

Each package-instance-spec may only import earlier
package-instance-specs, to ensure the absence of loops.

Joe Hurd Packaging Theories of Higher Order Logic 13 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Packages

We can now define the grammar for theory packages:

package ← tag∗

package-instance-spec∗

theory { theory }

Tags are package meta-data:

tag ← name: value

Joe Hurd Packaging Theories of Higher Order Logic 14 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example

Theory Package (hol-light-trivia-one-def-2009.8.24)

name: hol-light-trivia-one-def
version: 2009.8.24
description: HOL Light definition of the unit type.

theory { article "trivia-one-def.art"; }

Joe Hurd Packaging Theories of Higher Order Logic 15 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example

Theory Package Summary (hol-light-trivia-one-def-2009.8.24)

input-types: -> bool

input-consts: ! /\ = ? T select

assumed:

|- T

{.} |- (!) P

{.} |- (?) P

{..} |- p /\ q

|- t = (t = T)

|- (?) = \P. P ((select) P)

defined-types: unit

defined-consts: one one_ABS one_REP

thms:

|- ?b. b

|- one = select x. T

|- (!a. one_ABS (one_REP a) = a) /\

!r. r = (one_REP (one_ABS r) = r)

Joe Hurd Packaging Theories of Higher Order Logic 16 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Design

Well-designed theory packages have:

a clear topic (e.g., trigonometric functions);
a simple set of assumptions (i.e., satisfied by standard
packages);
a carefully chosen set of theorems (no junk, and a minimal
interface if the package makes definitions);
and it should go without saying: no axioms!

Theory Engineering Challenge: Construct a standard library of
well-designed theory packages, available to all the theorem
prover implementations.

Joe Hurd Packaging Theories of Higher Order Logic 17 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example II

Theory Package (unit-def-1.0)

name: unit-def

version: 1.0

description: Definition of the unit type

require hol-light-thm {

package: hol-light-thm-2009.8.24

}

require hol-light-trivia-one-def {

import: hol-light-thm

package: hol-light-trivia-one-def-2009.8.24

}

require hol-light-trivia-one-alt {

import: hol-light-thm

import: hol-light-trivia-one-def

package: hol-light-trivia-one-alt-2009.8.24

}

theory { import hol-light-trivia-one-alt; }

Joe Hurd Packaging Theories of Higher Order Logic 18 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Package Example II

Theory Package Summary (unit-def-1.0)

input-types: -> bool

input-consts: ! /\ = ==> ? T select

assumed:

|- !t. (\x. t x) = t

|- T = ((\p. p) = \p. p)

|- (!) = \P. P = \x. T

|- (==>) = \p q. (p /\ q) = p

|- !P x. P x ==> P ((select) P)

|- (/\) = \p q. (\f. f p q) = \f. f T T

|- (?) = \P. !q. (!x. P x ==> q) ==> q

defined-types: unit

defined-consts: one

thms:

|- !v. v = one

Joe Hurd Packaging Theories of Higher Order Logic 19 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Symbol Tables Considered Harmful

To make it easy to reason about theory package instances, we
would like package instantiation to be a pure function

package-instance-spec → Γ ` ∆ .

Possible because the package management tool implements a
purely functional logical kernel (an idea of Freek Wiedijk).

Constants and type operators contain their definitions, instead
of being inserted in a symbol table, so definitions are
referentially transparent:

(let c = define φ in f c c) ≡ (f (define φ) (define φ))

Joe Hurd Packaging Theories of Higher Order Logic 21 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Efficient Sharing

Referential transparency means there is no difference in
functionality between instantiating a theory package multiple
times in the same way or instantiating it once and reusing.

However, there will likely be a big difference in performance
(article files are measured in megabytes).

Challenge: Detecting when two package-instance-specs would
result in the same theory.

The logical kernel similarly aims to share subterms as much as
possible, in computing free variables, substitutions, etc.

Joe Hurd Packaging Theories of Higher Order Logic 22 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Summary

This talk presented a language for combining and packaging
theories.

The next challenge: build the package management
infrastructure for people to contribute to building a standard
library of theories.

The project web page:

http://gilith.com/research/opentheory

Joe Hurd Packaging Theories of Higher Order Logic 24 / 26

http://gilith.com/
re
sear
ch/opentheory


Introduction Combining Theories Packaging Theories Implementation Notes Summary

Package Instance Semantics

The concrete syntax for package-instance-spec evaluates to
the theory ⋃

Γi ∪
(

Γσ −
⋃

∆i

)
` ∆σ

where:

the imported package-instance-specs evaluate to Γi ` ∆i ;
the interpretation rules are the renaming σ; and
the package-name is the theory Γ ` ∆.

Joe Hurd Packaging Theories of Higher Order Logic 25 / 26



Introduction Combining Theories Packaging Theories Implementation Notes Summary

Theory Semantics

Here is how the concrete syntax for theory is evaluated in a
context with theorems Φ and renaming σ:

[article "[Γ ` ∆]";]Φ,σ = Γσ − Φ ` ∆σ

[{ [] }]Φ,σ = ∅ ` ∅
[{ θ1 :: θ2 }]Φ,σ = let Γ1 ` ∆1 = [θ1]Φ,σ in

let Γ2 ` ∆2 = [{ θ2 }]Φ∪∆1,σ
in

Γ1 ∪ Γ2 ` ∆1 ∪∆2

[local θ1 in θ2]Φ,σ = let Γ1 ` ∆1 = [θ1]Φ,σ in

let Γ2 ` ∆2 = [θ2]Φ∪∆1,σ
in

Γ1 ∪ Γ2 ` ∆2

[interpret { ρ } in θ]Φ,σ = [θ]Φ,σ◦ρ
[import [Γ ` ∆];]Φ,σ = Γ ` ∆

Note that importing a package-instance ignores the theory
context; its context is fixed by the package-instance-spec .

Joe Hurd Packaging Theories of Higher Order Logic 26 / 26


	Introduction
	Combining Theories
	Packaging Theories
	Implementation Notes
	Summary

