o .

First-Order Proof Tactics in Higher Order
Logic Theorem Provers

Joe Hurd
j oe. hurd@l . cam ac. uk

University of Cambridge

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.1/2:

Contents

Introduction

Logical Interface
First-Order Calculi
Porting to PVS
Conclusion

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.2/2:

First-Order Proof Tactics: Why?
B o

e HOL already has a proof tactic for first-order logic with
equality, called MESON_TAC.

Based on the model elimination calculus.
Added to HOL in 1996 by John Harrison.

e Building the core distribution of HOL uses MESON_TAC to
prove 1779 subgoals:

Up from 1428 just five months ago.
A further 2024 subgoals in the HOL examples.

e Clearly a useful tool for interactive proof.

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.3/2:

First-Order Proof Tactics: Example

-

A typical HOL subgoal proved using MESON_TAC:
(G) Va,y, z. divides x y = divides x (2 x y)
We pass as arguments the following theorems:

(D) - Vo,y.divideszy < dz.y=zx*x
(C) - Vo,y. x5y =yx*x
(A) = Vr,y,z. (exy)xz2=x % (y*2)

The tactic succeeds because the formula
(D) A (C)A(A) = (G)

IS a tautology In first-order logic with equality.

.

=

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.4/2:

First-Order Proof Tactics: How?
- o

To prove the HOL subgoal g
1. Convert the negation of g to CNF
(A) F —g < FJa. (Voi.ci)) AN A Vop. cn)

2. Map each HOL term ¢; to a first-order logic clause.
3. The first-order prover finds a refutation for the clauses.
4. The refutation is translated to the HOL theorem

B) {(Voi.a)...,(Vip.)} B L
5. Finally, use (A) and (B) to deduce

o Y -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.5/2:

Contents

Introduction

Logical Interface

First-Order Calculi
Porting to PVS
Conclusion

Tactics in Higher Order Logic Theorem Provers — Joe Hur

_p.

6/2:

Logical Interface
- -

e Can program versions of first-order calculi that work
directly on HOL terms.

But types (and)\’s) add complications;
and then the mapping from HOL terms to first-order
logic Is hard-coded.

e Would like to program versions of the calculi that work
on standard first-order terms, and have someone else
worry about the mapping to HOL terms.

Then coding is simpler and the mapping is flexible;

but how can we keep track of first-order proofs, and
automatically translate them to HOL?

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.7/2:

First-order Logical Kernel

ste the ML type system to create an LCF-style logical T
kernel for clausal first-order logic:

si gnat ure Kernel

= sig

(* An ABSTRACT type for theorens *)
eqtype thm

(* Destruction of theorens is fine *)

val

dest _thm:

thm — formula [ist x proof

(* But creation is only allowed by these primtive rules *)

val
val
val
val
val
val
val

end

AXI OM
REFL
ASSUVE

| NST
FACTOR
RESOLVE

EQUALI TY :

formula list — thm

term — thm

formula — thm

subst — thm — thm

thm — thm

formula — thm — thm — thm

formula — int list — term — bool — thm — thm

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.8/2:

-

.

Making Mappings Modular
-

The logical kernel keeps track of proofs, and allows the
HOL mapping to first-order logic to be modular:

si gnature Mapping =

sig
(* Mapping HOL goals to first-order logic *)
val map _goal : HOL.term — FOL.fornmula Ii st

(* Translating first-order |logic proofs to HOL *)

type Axiommap = FCOL.forrmula list — HOL.thm

val translate proof : Axiomnmap — Kernel.thm — HOL.thm
end

Implementations of Mapping simply provide HOL versions of
the primitive inference steps in the logical kernel, and then
all first-order theorems can be translated to HOL. J

Type Information?

f e It Is not necessary to include type information in the T
mapping from HOL terms to first-order terms/formulas.

e Principal types can be inferred when translating
first-order terms back to HOL.

e But for various reasons the untyped mapping
occasionally fails.

We’'ll see examples of this later.

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.10/2-

Four Mappings
- -

We have implemented four mappings from HOL to
first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping First-order formula
first-order, untyped n<n+4+1
first-order, typed (m:N)<((n:N)+(1:N):N)

higher-order, untyped 1 ((<.n).((+.n).1))
higher-order, typed

T((«:N=N-=>B). (n:N):N—B) .
((+:N—=N—=N).n:N):N—>N).(1:N):N):B)

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.11/2-

Mapping Efficiency
- -

o Effect of the mapping on the time taken by model

elimination calculus to prove a HOL version of £0S’s
‘nonobvious’ problem:

Mapping untyped | typed
first-order 1.70s | 2.49s
higher-order 2.87s | 7.89s

e These timing are typical, although 2% of the time
higher-order, typed does beat first-order, untyped.

e We run in untyped mode, and if an error occurs during
proof translation then restart search in typed mode.

Restarts 17+3 times over all 1779+2024 subgoals.

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.12/2-

Mapping Coverage
-

higher-order first-order x

- Vf,s,a,b. Vz. fr=a) AN bEimage fs = (a=0b)

(f has different arities)
- dx. x (z is a predicate variable)
- E|f. V. f r =X (f is a function variable)

typed untyped x

= length (|| : N*) =0 A length (|| :R*) =0 =

Iength (H : R*) =0 (indistinguishable terms)
= V. SKzx =1 (extensionality applied too many times)
L = (\V/ZC. Xr = C) = a=2> (bad proofvia T = 1)

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.13/2

Contents

Introduction
Logical Interface

First-Order Calculi
Porting to PVS
Conclusion

First-Order Calculi

o .

Model elimination; resolution; the delta preprocessor.
Trivial reduction to our first-order primitive inferences.

e Implemented ML versions of several first-order calculi.

e Can run them simultaneously using time slicing.

They cooperate by contributing to a central pool of
unit clauses.

e Used the TPTP problem set for most of the tuning.

Verified correlation between performance on TPTP
and performance on HOL subgoals.

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.15/2-

Model Elimination

o .

e Similar search strategy (but not identical!) to MESON_TAC.

e Incorporated three major optimizations:
Ancestor pruning (Loveland).
Unit lemmaizing (Astrachan and Stickel).
Divide & conquer searching (Harrison).

e Unit lemmaizing gave a big win.
The logical kernel made it easy to spot unit clauses.

Surprise: divide & conquer searching can prevent
useful unit clauses being found!

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.16/2

Resolution

f e Implements ordered resolution and ordered T
paramodulation.

e Powerful equality calculus allows proofs way out of
MESON_TAC’S range:

= (Vo,y. zxy =1y*x) A
axbxcxdxex fxgxh=hxgxfxexdxcxbxa

e Had to tweak it for HOL in two important ways:
Avoid paramodulation into a typed variable.
Sizes of clauses shouldn’t include types.

o -

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.17/2

Delta Preprocessor

=

Schumann’s idea: perform shallow resolutions on
clauses before passing them to model elimination
prover.

Our version: for each predicate P/n in the goal, use
model elimination to search for unit clauses of the form
P(X1,...,X,) and =P(Y1,...,Yy).

Doesn’t directly solve the goal, but provides help in the
form of unit clauses.

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.18/2-

TPTP Evaluation
2000 I I I | I ___1

1800 |- "

1600

1400 |-

1200

1000 f&

800 |t

600 | .

400 * .

200 - —

0! ! ! ! ! |
0 10 20 30 40 50 60

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.19/2-

-

TPTP Evaluation

Total “unsatisfiable” problems in TPTP v2.4.1 = 3297

rmd rm rd r m total
+20 +238 +351 +591

rmd | * 95.0% 99.5% 99.5% 99.5% 99.5% | 1819
+11 +231 +338 +591

rm | 2 99.5% 99.5% 99.5% 99.5% | 1811
+114 +571

d | 22 2 99.5% 99.5% 99.5% | 1592
+562

r a0 99.5% 99.5% | 1483
+21

md | =2 8L =88 18 99.5% | 1316

m 69 +78 4277 4377 " 1297

=

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.20/2-

Contents

Introduction
Logical Interface
First-Order Calculi

Porting to PVS

Conclusion

Porting to PVS
-

The first-order logical kernel and calculi are freely
avallable as a Standard ML package.

‘All’ that remains iIs to implement a mapping from PVS
to first-order logic.

The mapping and proof translation would work In
exactly the same way as the HOL mapping, except for
one situation. ..

During proof translation, it is often necessary to lift
first-order terms to higher-order logic terms. In PVS,
this operation would generate type correctness
conditions (TCCs).

Is it always possible to automatically prove TCCs
generated in this way? J

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.22/2-

Contents

Introduction
Logical Interface
First-Order Calculi
Porting to PVS

Conclusion

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.23/2

Conclusions

-

We have presented a HOW-TO for integrating first-order
provers as tactics in higher-order logic theorem provers.

The technology has proven itself in HOL.
Hopefully it can be transferred to PVS (and others).

The logical interface allowed free experimentation with
the first-order calculi.

Resolution performed better than model elimination on
HOL subgoals.

Even on the biased set of MESON_TAC subgoals!

Combining first-order calculi resulted in a much better
prover, both for TPTP problems and HOL subgoals.

-

First-Order Proof Tactics in Higher Order Logic Theorem Provers — Joe Hurd — p.24/2-

	Contents
	First-Order Proof Tactics: Why?
	First-Order Proof Tactics: Example
	First-Order Proof Tactics: How?
	Contents
	Logical Interface
	First-order Logical Kernel
	Making Mappings Modular
	Type Information?
	Four Mappings
	Mapping Efficiency
	Mapping Coverage
	Contents
	First-Order Calculi
	Model Elimination
	Resolution
	Delta Preprocessor
	TPTP Evaluation
	TPTP Evaluation
	Contents
	Porting to PVS
	Contents
	Conclusions

