Probabilistic Guarded Commands Mechanized in HOL

Joe Hurd joe.hurd@comlab.ox.ac.uk

Oxford University

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)

Contents

• **Introduction**

- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example: Rabin's Mutual Exclusion Algorithm
- Conclusion

Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It's Dijkstra's GCL extended with probabilistic choice

 c_1 $_p\oplus$ c_2

- Like GCL, the semantics is based on weakest preconditions.
- Important: retains demonic choice

c_1 n c_2

• Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic: essentially first-order logic with quantification over functions.
- Sprung from the Edinburgh LCF project, so has ^a small logical kernel to ensure soundness.

Contents

\bullet Introduction

\bullet **Formalizing Probabilistic Guarded Commands**

- wlp Verification Condition Generator
- \bullet Example: Rabin's Mutual Exclusion Algorithm
- \bullet **Conclusion**

pGCL Semantics

 $\bullet\,$ Given a standard GCL program C and a postcondition Q , let P be the weakest precondition that satisfies

 $[P]C[Q]$

- Precondition P is weaker than P' if $P' \Rightarrow P$.
- $\bullet\,$ Think of C as a function that transforms postconditions into weakest preconditions.
- pGCL generalizes this to probabilistic programs:
	- Conditions $\alpha \to \mathbb{B}$ become expectations $\alpha \to [0, +\infty]$.
	- Expectation P is weaker than P' if $P' \sqsubseteq P$.
	- Think of programs as expectation transformers.

Expectations

- Expectations are reward functions, from states to expected rewards.
- $\bullet \,$ Modelled in HOL as functions $\alpha \to [0,+\infty].$
- Define the following operations on expectations:
	- Min $e_1 e_2 \equiv \lambda s$. min $(e_1 s)$ $(e_2 s)$

$$
\bullet \ \ e_1 \sqsubseteq e_2 \ \equiv \ \forall s. \ e_1 \ s \le e_2 \ s
$$

- Cond $b e_1 e_2 \equiv \lambda s$. if $b s$ then $e_1 s$ else $e_2 s$
- Lin $p \ e_1 \ e_2 \ \equiv \ \lambda s. \ [p \ s]^{\leq 1} \times e_1 \ s + (1 [p \ s]^{\leq 1}) \times e_2 \ s$

States

• Fix states to be mappings from variable names to integers:

$$
\mathsf{state} \ \equiv \ \mathsf{string} \to \mathbb{Z}
$$

• For convenience, define ^a state update function:

assign v $f s \equiv \lambda w$. if $v = w$ then f s else s w

pGCL Commands

Model pGCL commands with ^a HOL datatype:

command≡ Abort

| Skip

- Assign of string \times (state $\rightarrow \mathbb{Z}$)
- Seq of command \times command
- Demon of command \times command
- Prob of (state \rightarrow posreal) \times command \times command
- While of (state $\rightarrow \mathbb{B}$) \times command

Note: the probability in Prob can depend on the state.

Derived Commands

Define the following *derived commands* as syntactic sugar:

$$
v := f \equiv \text{Assign } v f
$$

\n
$$
c_1 ; c_2 \equiv \text{Seq } c_1 c_2
$$

\n
$$
c_1 \sqcap c_2 \equiv \text{Demo } c_1 c_2
$$

\n
$$
c_1 \varphi \oplus c_2 \equiv \text{Prob } (\lambda s. p) c_1 c_2
$$

\n
$$
\text{Cond } b c_1 c_2 \equiv \text{Prob } (\lambda s. \text{ if } b s \text{ then } 1 \text{ else } 0) c_1 c_2
$$

\n
$$
v := \{e_1, \ldots, e_n\} \equiv v := e_1 \sqcap \cdots \sqcap v := e_n
$$

\n
$$
v := \langle e_1, \cdots, e_n \rangle \equiv v := e_1 \sqcap \neg \neg \sqcap v := \langle e_2, \ldots, e_n \rangle
$$

\n
$$
b_1 \rightarrow c_1 \mid \cdots \mid b_n \rightarrow c_n \equiv
$$

\n
$$
\text{Abot} \quad \text{if none of the } b_i \text{ hold on the current state}
$$

\n
$$
\text{I}_{i \in I} c_i \quad \text{where } I = \{i \mid 1 \leq i \leq n \land b_i \text{ holds}\}
$$

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

$$
\vdash \ (wp \ Abort = \lambda e. \ Zero)
$$

- \wedge (wp Skip = $\lambda e. e$)
- $\wedge\;\;$ (wp $(\mathsf{Assign}\;v\;f)=\lambda e,s.\;e$ (assign $v\;f\;s)$
- \wedge (wp (Seq $c_1 c_2$) = λe . wp c_1 (wp $c_2 e$))
- \wedge (wp (Demon c_1 c_2) = λe . Min (wp c_1 e) (wp c_2 e))
- \wedge (wp (Prob $p \ c_1 \ c_2) = \lambda e$. Lin $p \ (wp \ c_1 \ e) \ (wp \ c_2 \ e)$)
- \wedge (wp (While $b\ c) = \lambda e$. expect_lfp ($\lambda e'.$ Cond b (wp $c\ e')\ e))$

Weakest Preconditions: Example

 $\bullet\,$ The goal is to end up with variables i and j containing the same value:

$$
post \equiv \text{if } i = j \text{ then } 1 \text{ else } 0.
$$

• First program:

$$
\mathsf{pd} \equiv i := \langle 0, 1 \rangle \; ; \; j := \{0, 1\}
$$
\n
$$
\vdash \mathsf{wp} \; \mathsf{pd} \; \mathsf{post} = \mathsf{Zero}
$$

 \bullet • Second program:

$$
\mathsf{dp} \equiv j := \{0, 1\} ; i := \langle 0, 1 \rangle
$$

$$
\vdash \mathsf{wp} \; \mathsf{d}\mathsf{p} \; \mathsf{post} = \lambda s. \; 1/2.
$$

Example: Monty Hall

contestant Sw*itch* \equiv $pc := \{1, 2, 3\}$; $cc := \langle 1, 2, 3\rangle \; ;$ $pc \neq 1 \wedge cc \neq 1 \rightarrow ac := 1$ $pc \neq 2 \wedge cc \neq 2 \rightarrow ac := 2$ $pc \neq 3 \wedge cc \neq 3 \rightarrow ac := 3$; if ¬*switch* then Skip else $cc := (\mathsf{if}\; cc \neq 1 \land ac \neq 1$ then 1 else if $cc\neq 2 \wedge ac \neq 2$ then 2 else $3)$

The postcondition is simply the desired goal of the contestant, i.e.,

$$
win \equiv \text{if } cc = pc \text{ then } 1 \text{ else } 0.
$$

Example: Monty Hall

- Verification proceeds by:
	- 1. Rewriting away all the syntactic sugar.
	- 2. Expanding the definition of wp.
	- 3. Carrying out the numerical calculations.
- After 22 seconds and 250536 primitive inferences in the logical kernel:

 $\vdash \,$ wp (contestant S ${\boldsymbol{w} }$ itc ${\boldsymbol{h}})$ win $=\lambda s.$ if S ${\boldsymbol{w} }$ itc ${\boldsymbol{h} }$ then $2/3$ else $1/3$

- In other words, by switching the contestant is twice as likely to win the prize.
- Not trivial to do by hand, because the intermediate expectations get rather large.

Contents

- **•** Introduction
- Formalizing Probabilistic Guarded Commands

\bullet wlp **Verification Condition Generator**

- Example: Rabin's Mutual Exclusion Algorithm
- \bullet **Conclusion**

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

$$
\vdash \ (wlp \text{ Abort} = \lambda e. \text{ Infty})
$$

- \wedge (wlp Skip = $\lambda e.$ $e)$
- $\wedge\;\;$ (wlp $(\operatorname{\mathsf{Assign}}\, v\; f)=\lambda e, s.\; e$ (assign $v\; f\; s)$
- ∧(wlp (Seq c_1 c_2) = λe . wlp c_1 (wlp c_2 e))
- ∧(wlp (Demon c_1 c_2) = λe . Min (wlp c_1 e) (wlp c_2 e))
- \wedge (wlp (Prob $p \ c_1 \ c_2) = \lambda e$. Lin p (wlp $c_1 \ e)$ (wlp $c_2 \ e)$)
- $\wedge\;\;$ (wlp $(\mathsf{While}\; b\; c) = \lambda e.$ expect_gfp $(\lambda e'.$ Cond b $(\mathsf{wlp}\; c\; e')\; e))$

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the simplest infinite loop:

 $loop \equiv$ While $(\lambda s. \top)$ Skip

• For any postcondition *post*, we have

 $\vdash \,$ wp loop ${post = \text{Zero} \, \wedge \,}$ wlp loop ${post = \text{Infty}}$

• These correspond to the Hoare triples

 $[\perp]$ loop $[post]$ { \top } loop {post}

as we would expect from an infinite loop.

Calculating wlp **Lower Bounds**

- \bullet Suppose we have a pGCL command c and a postcondition q .
- We wish to derive a lower bound on the weakest liberal precondition.
	- In general, programs are shown to have desirable properties by proving lower bounds.
	- Example: $\;\vdash\; (\lambda s.\; 0.95) \;\sqsubseteq\; \mathsf{wp}$ Prog (if ok then 1 else 0)
- Can think of this as the query $P \sqsubseteq$ wlp c q .
- \bullet Idea: use a Prolog interpreter to solve for the variable P .

Calculating wlp**: Rules**

Simple rules:

- $\bullet~$ Infty \sqsubseteq wlp Abort Q
- $\bullet \ \ Q \sqsubseteq$ wlp Skip Q
- $\bullet~$ $R\sqsubseteq$ wlp C_2 $Q~\wedge~$ $P\sqsubseteq$ wlp C_1 R ⇒ $P \sqsubseteq$ wlp (Seq C_1 C_2) Q

Note: the Prolog interpreter automatically calculates the 'middle condition' in ^a Seq command.

Calculating wlp**: While Loops**

- Define an assertion command: Assert $p c \equiv c$.
- Provide ^a while rule that requires an assertion:

\n- $$
R \sqsubseteq
$$
 wlp $C \, P \wedge P \sqsubseteq$ wlp_cond $b \, R \, Q$
\n- \Rightarrow
\n- $P \sqsubseteq$ wlp (Assert P (While $b \, c$)) Q
\n

- The second premise generates a verification condition as an extra subgoal.
- It is left to the user to provide a useful loop invariant in the Assert around the while loop.

Contents

- \bullet Introduction
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- \bullet **Example: Rabin's Mutual Exclusion Algorithm**
- Conclusion

- Suppose N processors are executing concurrently, and from time to time some of them need to enter a critical section of code.
- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing ^a leader who is permitted to enter the critical section:
	- 1. Each of the waiting processors repeatedly tosses ^a fair coin until a head is shown
	- 2. The processor that required the largest number of tosses wins the election.
	- 3. If there is ^a tie, then have another election.
- Could implement the coin tossing using $n := 0 \; ; \; b := 0 \; ; \; \mathsf{While} \; (b = 0) \; (n := n+1 \; ; \; b := \langle 0, 1 \rangle)$

For our verification, we do not model i processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

- 1. Initialize i with the number of processors waiting to enter the critical section who have just picked ^a number.
- 2. Initialize n with 1, the lowest number not yet considered.
- 3. If $i=1$ then we have a unique winner: return S∪ $\mathtt{CCESS}.$
- 4. If $i=0$ then the election has failed: return F<code>AILURE</code>.
- 5. Reduce i by eliminating all the processors who picked the lowest number n (since certainly none of them won the election).
- 6. Increment n by 1, and jump to Step 3.

The following pGCL program implements this data refinement:

> rabin \equiv While $(1 < i)$ ($n := i \; ;$ While $(0 < n)$ $(d := \langle 0, 1 \rangle ; i := i - d ; n := n - 1)$)

The desired postcondition representing ^a unique winner of the election is

$$
post \equiv \text{if } i = 1 \text{ then } 1 \text{ else } 0
$$

• The precondition that we aim to show is

 $pre \equiv$ if $i = 1$ then 1 else if $1 < i$ then $2/3$ else 0

"For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce a unique winner is $2/3$, except for the trivial case of one processor when it will always succeed."

- Surprising: The probability of success is independent of the number of processors.
- We formally verify the following statement of partial correctness:

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ rabin post

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply pre.
- For the inner loop we used

if $0\leq n\leq i$ then $2/3\times$ invar 1 i $n+$ invar 2 i n else 0

where

```
invar1 i n \equiv1 - (\mathsf{if} \,\, i = n \,\, \mathsf{then} \,\, (n+1)/2^n else if i = n+1 then 1/2^n else 0)invar2 i n~\equiv~ if i = n then n/2^n else if i = n+1 then 1/2^n else 0
```
• Coming up with these was the hardest part of the verification.

The verification proceeded as follows:

- 1. Create the annotated program annotated_rabin.
- $2.$ Prove rabin $=$ annotated_rabin
- 3. Use this to reduce the goal to

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ annotated_rabin post

- 4. This is now in the correct form to apply the VC generator.
- 5. Finish off the VCs with 58 lines of HOL-4 proof script.

$$
|- \text{ Leg } (\setminus s. \text{ if } s"i" = 1 \text{ then } 1
$$

else if 1 < s"i" then 2/3 else 0)
(wlp rabin ($\setminus s. \text{ if } s"i" = 1 \text{ then } 1 \text{ else } 0)$)

Contents

- **•** Introduction
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example: Rabin's Mutual Exclusion Algorithm

• **Conclusion**

Conclusion

- Formalized the theory of pGCL in higher-order logic.
	- Definitional theory, so high assurance of consistency.
- Created an automatic tool for deriving sufficient conditions for partial correctness.
	- Useful product of mechanizing ^a program semantics.
- HOL-4 well suited to this task.
	- Hard VCs can be passed to the user as subgoals.

Related Work

- Formal methods for probabilistic programs:
	- Christine Paulin's work in Coq, 2002.
	- Prism model checker, Kwiatkowska et. al., 2000–
- Mechanized program semantics:
	- Formalizing Dijkstra, Harrison, 1998.
	- Mechanizing program logics in higher order logic, Gordon, 1989.