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Introduction: pGCL

• pGCL stands for probabilistic Guarded Command
Language.

• It’s Dijkstra’s GCL extended with probabilistic choice

c1 p⊕ c2

• Like GCL, the semantics is based on weakest
preconditions.

• Important: retains demonic choice

c1 u c2

• Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994–
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The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release called HOL4, developed jointly by
Cambridge, Utah and ANU.

• Implements classical Higher-Order Logic: essentially
first-order logic with quantification over functions.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.
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pGCL Semantics

• Given a standard GCL program C and a postcondition
Q, let P be the weakest precondition that satisfies

[P ]C[Q]

• Precondition P is weaker than P ′ if P ′ ⇒ P .

• Think of C as a function that transforms postconditions
into weakest preconditions.

• pGCL generalizes this to probabilistic programs:
• Conditions α → B become expectations α → [0, +∞].
• Expectation P is weaker than P ′ if P ′ v P .
• Think of programs as expectation transformers.
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Expectations

• Expectations are reward functions, from states to
expected rewards.

• Modelled in HOL as functions α → [0, +∞].

• Define the following operations on expectations:
• Min e1 e2 ≡ λs. min (e1 s) (e2 s)

• e1 v e2 ≡ ∀s. e1 s ≤ e2 s

• Cond b e1 e2 ≡ λs. if b s then e1 s else e2 s

• Lin p e1 e2 ≡ λs. [p s]≤1 × e1 s + (1 − [p s]≤1) × e2 s
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States

• Fix states to be mappings from variable names to
integers:

state ≡ string → Z

• For convenience, define a state update function:

assign v f s ≡ λw. if v = w then f s else s w

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.8/30



pGCL Commands

Model pGCL commands with a HOL datatype:

command ≡ Abort

| Skip

| Assign of string × (state → Z)

| Seq of command × command

| Demon of command × command

| Prob of (state → posreal) × command × command

| While of (state → B) × command

Note: the probability in Prob can depend on the state.
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Derived Commands
Define the following derived commands as syntactic sugar:

v := f ≡ Assign v f

c1 ; c2 ≡ Seq c1 c2

c1 u c2 ≡ Demon c1 c2

c1 p⊕ c2 ≡ Prob (λs. p) c1 c2

Cond b c1 c2 ≡ Prob (λs. if b s then 1 else 0) c1 c2

v := {e1, . . . , en} ≡ v := e1 u · · · u v := en

v := 〈e1, · · · , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉

b1 → c1 | · · · | bn → cn ≡
{

Abort if none of the bi hold on the current state
∏

i∈I ci where I = {i | 1 ≤ i ≤ n ∧ bi holds}
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Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

` (wp Abort = λe. Zero)

∧ (wp Skip = λe. e)

∧ (wp (Assign v f) = λe, s. e (assign v f s)

∧ (wp (Seq c1 c2) = λe. wp c1 (wp c2 e))

∧ (wp (Demon c1 c2) = λe. Min (wp c1 e) (wp c2 e))

∧ (wp (Prob p c1 c2) = λe. Lin p (wp c1 e) (wp c2 e))

∧ (wp (While b c) = λe. expect_lfp (λe′. Cond b (wp c e′) e))
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Weakest Preconditions: Example

• The goal is to end up with variables i and j containing
the same value:

post ≡ if i = j then 1 else 0.

• First program:

pd ≡ i := 〈0, 1〉 ; j := {0, 1}

` wp pd post = Zero

• Second program:

dp ≡ j := {0, 1} ; i := 〈0, 1〉

` wp dp post = λs. 1/2.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.12/30



Example: Monty Hall

contestant switch ≡

pc := {1, 2, 3} ;

cc := 〈1, 2, 3〉 ;

pc 6= 1 ∧ cc 6= 1 → ac := 1

| pc 6= 2 ∧ cc 6= 2 → ac := 2

| pc 6= 3 ∧ cc 6= 3 → ac := 3 ;

if ¬switch then Skip else

cc := (if cc 6= 1 ∧ ac 6= 1 then 1

else if cc 6= 2 ∧ ac 6= 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

win ≡ if cc = pc then 1 else 0.
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Example: Monty Hall

• Verification proceeds by:
1. Rewriting away all the syntactic sugar.
2. Expanding the definition of wp.
3. Carrying out the numerical calculations.

• After 22 seconds and 250536 primitive inferences in the
logical kernel:

` wp (contestant switch) win = λs. if switch then 2/3 else 1/3

• In other words, by switching the contestant is twice as
likely to win the prize.

• Not trivial to do by hand, because the intermediate
expectations get rather large.
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Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

` (wlp Abort = λe. Infty)

∧ (wlp Skip = λe. e)

∧ (wlp (Assign v f) = λe, s. e (assign v f s)

∧ (wlp (Seq c1 c2) = λe. wlp c1 (wlp c2 e))

∧ (wlp (Demon c1 c2) = λe. Min (wlp c1 e) (wlp c2 e))

∧ (wlp (Prob p c1 c2) = λe. Lin p (wlp c1 e) (wlp c2 e))

∧ (wlp (While b c) = λe. expect_gfp (λe′. Cond b (wlp c e′) e))
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Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop ≡ While (λs. >) Skip

• For any postcondition post , we have

` wp loop post = Zero ∧ wlp loop post = Infty

• These correspond to the Hoare triples

[⊥] loop [post ] {>} loop {post}

as we would expect from an infinite loop.
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Calculating wlp Lower Bounds

• Suppose we have a pGCL command c and a
postcondition q.

• We wish to derive a lower bound on the weakest liberal
precondition.
• In general, programs are shown to have desirable

properties by proving lower bounds.
• Example: ` (λs. 0.95) v wp Prog (if ok then 1 else 0)

• Can think of this as the query P v wlp c q.

• Idea: use a Prolog interpreter to solve for the variable P .
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Calculating wlp: Rules

Simple rules:

• Infty v wlp Abort Q

• Q v wlp Skip Q

• R v wlp C2 Q ∧ P v wlp C1 R
⇒

P v wlp (Seq C1 C2) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.
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Calculating wlp: While Loops

• Define an assertion command: Assert p c ≡ c.

• Provide a while rule that requires an assertion:
• R v wlp C P ∧ P v wlp_cond b R Q

⇒
P v wlp (Assert P (While b c)) Q

• The second premise generates a verification condition
as an extra subgoal.

• It is left to the user to provide a useful loop invariant in
the Assert around the while loop.
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Rabin’s Mutual Exclusion Algorithm

• Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical
section of code.

• The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.

• Could implement the coin tossing using
n := 0 ; b := 0 ; While (b = 0) (n := n + 1 ; b := 〈0, 1〉)
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Rabin’s Mutual Exclusion Algorithm

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

2. Initialize n with 1, the lowest number not yet considered.

3. If i = 1 then we have a unique winner: return SUCCESS.

4. If i = 0 then the election has failed: return FAILURE.

5. Reduce i by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

6. Increment n by 1, and jump to Step 3.
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Rabin’s Mutual Exclusion Algorithm

The following pGCL program implements this data
refinement:

rabin ≡ While (1 < i) (

n := i ;

While (0 < n)

(d := 〈0, 1〉 ; i := i − d ; n := n − 1)

)

The desired postcondition representing a unique winner of
the election is

post ≡ if i = 1 then 1 else 0
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Rabin’s Mutual Exclusion Algorithm

• The precondition that we aim to show is

pre ≡ if i = 1 then 1 else if 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always
succeed.”

• Surprising: The probability of success is independent of
the number of processors.

• We formally verify the following statement of partial
correctness:

pre v wlp rabin post
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Rabin’s Mutual Exclusion Algorithm

• Need to annotate the While loops with invariants.

• The invariant for the outer loop is simply pre.

• For the inner loop we used

if 0 ≤ n ≤ i then 2/3 × invar1 i n + invar2 i n else 0

where

invar1 i n ≡

1 − (if i = n then (n + 1)/2n
else if i = n + 1 then 1/2n

else 0)

invar2 i n ≡ if i = n then n/2n
else if i = n + 1 then 1/2n

else 0

• Coming up with these was the hardest part of the
verification.
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Rabin’s Mutual Exclusion Algorithm

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.

2. Prove rabin = annotated_rabin

3. Use this to reduce the goal to

pre v wlp annotated_rabin post

4. This is now in the correct form to apply the VC
generator.

5. Finish off the VCs with 58 lines of HOL-4 proof script.

|- Leq (\s. if s"i" = 1 then 1

else if 1 < s"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))
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Conclusion

• Formalized the theory of pGCL in higher-order logic.
• Definitional theory, so high assurance of consistency.

• Created an automatic tool for deriving sufficient
conditions for partial correctness.
• Useful product of mechanizing a program semantics.

• HOL-4 well suited to this task.
• Hard VCs can be passed to the user as subgoals.
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Related Work

• Formal methods for probabilistic programs:
• Christine Paulin’s work in Coq, 2002.
• Prism model checker, Kwiatkowska et. al., 2000–

• Mechanized program semantics:
• Formalizing Dijkstra, Harrison, 1998.
• Mechanizing program logics in higher order logic,

Gordon, 1989.
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