
Probabilistic Guarded Commands
Mechanized in HOL

Joe Hurd
joe.hurd@comlab.ox.ac.uk

Oxford University

Joint work with Annabelle McIver (Macquarie University) and
Carroll Morgan (University of New South Wales)

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.1/30

Contents

• Introduction
• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example: Rabin’s Mutual Exclusion Algorithm

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.2/30

Introduction: pGCL

• pGCL stands for probabilistic Guarded Command
Language.

• It’s Dijkstra’s GCL extended with probabilistic choice

c1 p⊕ c2

• Like GCL, the semantics is based on weakest
preconditions.

• Important: retains demonic choice

c1 u c2

• Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994–

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.3/30

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release called HOL4, developed jointly by
Cambridge, Utah and ANU.

• Implements classical Higher-Order Logic: essentially
first-order logic with quantification over functions.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.4/30

Contents

• Introduction

• Formalizing Probabilistic
Guarded Commands

• wlp Verification Condition Generator

• Example: Rabin’s Mutual Exclusion Algorithm

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.5/30

pGCL Semantics

• Given a standard GCL program C and a postcondition
Q, let P be the weakest precondition that satisfies

[P]C[Q]

• Precondition P is weaker than P ′ if P ′ ⇒ P .

• Think of C as a function that transforms postconditions
into weakest preconditions.

• pGCL generalizes this to probabilistic programs:
• Conditions α → B become expectations α → [0, +∞].
• Expectation P is weaker than P ′ if P ′ v P .
• Think of programs as expectation transformers.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.6/30

Expectations

• Expectations are reward functions, from states to
expected rewards.

• Modelled in HOL as functions α → [0, +∞].

• Define the following operations on expectations:
• Min e1 e2 ≡ λs. min (e1 s) (e2 s)

• e1 v e2 ≡ ∀s. e1 s ≤ e2 s

• Cond b e1 e2 ≡ λs. if b s then e1 s else e2 s

• Lin p e1 e2 ≡ λs. [p s]≤1 × e1 s + (1 − [p s]≤1) × e2 s

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.7/30

States

• Fix states to be mappings from variable names to
integers:

state ≡ string → Z

• For convenience, define a state update function:

assign v f s ≡ λw. if v = w then f s else s w

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.8/30

pGCL Commands

Model pGCL commands with a HOL datatype:

command ≡ Abort

| Skip

| Assign of string × (state → Z)

| Seq of command × command

| Demon of command × command

| Prob of (state → posreal) × command × command

| While of (state → B) × command

Note: the probability in Prob can depend on the state.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.9/30

Derived Commands
Define the following derived commands as syntactic sugar:

v := f ≡ Assign v f

c1 ; c2 ≡ Seq c1 c2

c1 u c2 ≡ Demon c1 c2

c1 p⊕ c2 ≡ Prob (λs. p) c1 c2

Cond b c1 c2 ≡ Prob (λs. if b s then 1 else 0) c1 c2

v := {e1, . . . , en} ≡ v := e1 u · · · u v := en

v := 〈e1, · · · , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉

b1 → c1 | · · · | bn → cn ≡
{

Abort if none of the bi hold on the current state
∏

i∈I ci where I = {i | 1 ≤ i ≤ n ∧ bi holds}

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.10/30

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

` (wp Abort = λe. Zero)

∧ (wp Skip = λe. e)

∧ (wp (Assign v f) = λe, s. e (assign v f s)

∧ (wp (Seq c1 c2) = λe. wp c1 (wp c2 e))

∧ (wp (Demon c1 c2) = λe. Min (wp c1 e) (wp c2 e))

∧ (wp (Prob p c1 c2) = λe. Lin p (wp c1 e) (wp c2 e))

∧ (wp (While b c) = λe. expect_lfp (λe′. Cond b (wp c e′) e))

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.11/30

Weakest Preconditions: Example

• The goal is to end up with variables i and j containing
the same value:

post ≡ if i = j then 1 else 0.

• First program:

pd ≡ i := 〈0, 1〉 ; j := {0, 1}

` wp pd post = Zero

• Second program:

dp ≡ j := {0, 1} ; i := 〈0, 1〉

` wp dp post = λs. 1/2.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.12/30

Example: Monty Hall

contestant switch ≡

pc := {1, 2, 3} ;

cc := 〈1, 2, 3〉 ;

pc 6= 1 ∧ cc 6= 1 → ac := 1

| pc 6= 2 ∧ cc 6= 2 → ac := 2

| pc 6= 3 ∧ cc 6= 3 → ac := 3 ;

if ¬switch then Skip else

cc := (if cc 6= 1 ∧ ac 6= 1 then 1

else if cc 6= 2 ∧ ac 6= 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

win ≡ if cc = pc then 1 else 0.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.13/30

Example: Monty Hall

• Verification proceeds by:
1. Rewriting away all the syntactic sugar.
2. Expanding the definition of wp.
3. Carrying out the numerical calculations.

• After 22 seconds and 250536 primitive inferences in the
logical kernel:

` wp (contestant switch) win = λs. if switch then 2/3 else 1/3

• In other words, by switching the contestant is twice as
likely to win the prize.

• Not trivial to do by hand, because the intermediate
expectations get rather large.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.14/30

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition
Generator

• Example: Rabin’s Mutual Exclusion Algorithm

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.15/30

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

` (wlp Abort = λe. Infty)

∧ (wlp Skip = λe. e)

∧ (wlp (Assign v f) = λe, s. e (assign v f s)

∧ (wlp (Seq c1 c2) = λe. wlp c1 (wlp c2 e))

∧ (wlp (Demon c1 c2) = λe. Min (wlp c1 e) (wlp c2 e))

∧ (wlp (Prob p c1 c2) = λe. Lin p (wlp c1 e) (wlp c2 e))

∧ (wlp (While b c) = λe. expect_gfp (λe′. Cond b (wlp c e′) e))

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.16/30

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop ≡ While (λs. >) Skip

• For any postcondition post , we have

` wp loop post = Zero ∧ wlp loop post = Infty

• These correspond to the Hoare triples

[⊥] loop [post] {>} loop {post}

as we would expect from an infinite loop.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.17/30

Calculating wlp Lower Bounds

• Suppose we have a pGCL command c and a
postcondition q.

• We wish to derive a lower bound on the weakest liberal
precondition.
• In general, programs are shown to have desirable

properties by proving lower bounds.
• Example: ` (λs. 0.95) v wp Prog (if ok then 1 else 0)

• Can think of this as the query P v wlp c q.

• Idea: use a Prolog interpreter to solve for the variable P .

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.18/30

Calculating wlp: Rules

Simple rules:

• Infty v wlp Abort Q

• Q v wlp Skip Q

• R v wlp C2 Q ∧ P v wlp C1 R
⇒

P v wlp (Seq C1 C2) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.19/30

Calculating wlp: While Loops

• Define an assertion command: Assert p c ≡ c.

• Provide a while rule that requires an assertion:
• R v wlp C P ∧ P v wlp_cond b R Q

⇒
P v wlp (Assert P (While b c)) Q

• The second premise generates a verification condition
as an extra subgoal.

• It is left to the user to provide a useful loop invariant in
the Assert around the while loop.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.20/30

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example: Rabin’s Mutual
Exclusion Algorithm

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.21/30

Rabin’s Mutual Exclusion Algorithm

• Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical
section of code.

• The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.

• Could implement the coin tossing using
n := 0 ; b := 0 ; While (b = 0) (n := n + 1 ; b := 〈0, 1〉)

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.22/30

Rabin’s Mutual Exclusion Algorithm

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

2. Initialize n with 1, the lowest number not yet considered.

3. If i = 1 then we have a unique winner: return SUCCESS.

4. If i = 0 then the election has failed: return FAILURE.

5. Reduce i by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

6. Increment n by 1, and jump to Step 3.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.23/30

Rabin’s Mutual Exclusion Algorithm

The following pGCL program implements this data
refinement:

rabin ≡ While (1 < i) (

n := i ;

While (0 < n)

(d := 〈0, 1〉 ; i := i − d ; n := n − 1)

)

The desired postcondition representing a unique winner of
the election is

post ≡ if i = 1 then 1 else 0

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.24/30

Rabin’s Mutual Exclusion Algorithm

• The precondition that we aim to show is

pre ≡ if i = 1 then 1 else if 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always
succeed.”

• Surprising: The probability of success is independent of
the number of processors.

• We formally verify the following statement of partial
correctness:

pre v wlp rabin post

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.25/30

Rabin’s Mutual Exclusion Algorithm

• Need to annotate the While loops with invariants.

• The invariant for the outer loop is simply pre.

• For the inner loop we used

if 0 ≤ n ≤ i then 2/3 × invar1 i n + invar2 i n else 0

where

invar1 i n ≡

1 − (if i = n then (n + 1)/2n
else if i = n + 1 then 1/2n

else 0)

invar2 i n ≡ if i = n then n/2n
else if i = n + 1 then 1/2n

else 0

• Coming up with these was the hardest part of the
verification.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.26/30

Rabin’s Mutual Exclusion Algorithm

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.

2. Prove rabin = annotated_rabin

3. Use this to reduce the goal to

pre v wlp annotated_rabin post

4. This is now in the correct form to apply the VC
generator.

5. Finish off the VCs with 58 lines of HOL-4 proof script.

|- Leq (\s. if s"i" = 1 then 1

else if 1 < s"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))
Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.27/30

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example: Rabin’s Mutual Exclusion Algorithm

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.28/30

Conclusion

• Formalized the theory of pGCL in higher-order logic.
• Definitional theory, so high assurance of consistency.

• Created an automatic tool for deriving sufficient
conditions for partial correctness.
• Useful product of mechanizing a program semantics.

• HOL-4 well suited to this task.
• Hard VCs can be passed to the user as subgoals.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.29/30

Related Work

• Formal methods for probabilistic programs:
• Christine Paulin’s work in Coq, 2002.
• Prism model checker, Kwiatkowska et. al., 2000–

• Mechanized program semantics:
• Formalizing Dijkstra, Harrison, 1998.
• Mechanizing program logics in higher order logic,

Gordon, 1989.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.30/30

	Contents
	Introduction: pGCL
	The HOL Theorem Prover
	Contents
	pGCL Semantics
	Expectations
	States
	pGCL Commands
	Derived Commands
	Weakest Preconditions
	Weakest Preconditions: Example
	Example: Monty Hall
	Example: Monty Hall
	Contents
	Weakest Liberal Preconditions
	Weakest Liberal Preconditions: Example
	Calculating $Wlp $ Lower Bounds
	Calculating $Wlp $: Rules
	Calculating $Wlp $: While Loops
	Contents
	Rabin's Mutual Exclusion Algorithm
	Rabin's Mutual Exclusion Algorithm
	Rabin's Mutual Exclusion Algorithm
	Rabin's Mutual Exclusion Algorithm
	Rabin's Mutual Exclusion Algorithm
	Rabin's Mutual Exclusion Algorithm
	Contents
	Conclusion
	Related Work

