
Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Formally Verified Endgame Tables

Joe Hurd

Galois, Inc.
joe@gilith.com

Guest Lecture, Combinatorial Games
Portland State University

Tuesday 10 May 2011

Joe Hurd Formally Verified Endgame Tables 1 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Talk Plan

1 Endgame Tables

2 Software Errors

3 Formal Verification

4 Verified Endgame Tables

5 Summary

Joe Hurd Formally Verified Endgame Tables 2 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Endgame Tables

Hardy (1940) estimated the number of possible games of
chess to be ≈ 101050

.

Shannon (1950) estimated the number of possible chess
positions to be ≈ 1043.

But the number of possible chess positions with n fixed pieces
is < 2× 16× 64n.

Endgame tables (EGTs) solve chess for small values of n.

Joe Hurd Formally Verified Endgame Tables 4 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Categorize and Conquer

Divide all possible chess positions into classes (e.g., KQKR).

Warning: It should never be possible for a chess game to
leave a class and enter it again later.

For each class C of positions define an enumeration
f : C → [0..N).

Can often reduce N by using symmetry and eliminating illegal
positions (e.g., touching kings).

Compute an array DTM[N] of depth-to-mate values.

DTM[f (p)] = n means that starting from position p White can
checkmate Black within n moves.
Use symmetry to find Black’s depth-to-mate and draws.

Joe Hurd Formally Verified Endgame Tables 5 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Computing DTM Endgame Tables

Code (Initialize DTM)

initialize() {

for each (p in C) {

if Black to move and checkmated then

DTM[f(p)] := 0

else

DTM[f(p)] := +∞
}

}

Joe Hurd Formally Verified Endgame Tables 6 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Computing DTM Endgame Tables (II)

Code (Propagate DTM values)

iterate() {

for each (p in C) {

Q := the set of possible next positions from p

if White to move then

DTM[f(p)] := 1 + minimum DTM of positions in Q

else if not in checkmate then

DTM[f(p)] := maximum DTM of positions in Q

}

}

Note: Q might include positions outside C

Joe Hurd Formally Verified Endgame Tables 7 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Computing DTM Endgame Tables (III)

Code (Converge to a fixed point)

compute() {

DTM := new Integer[N]

initialize()

while (DTM changes) {

iterate()

}

}

What can go wrong?

Joe Hurd Formally Verified Endgame Tables 8 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

The First Actual Computer Bug

On 9 September 1945 the
Harvard Mark II Machine broke
down because a moth got
caught between the points of
Relay #70 in Panel F.

At 3:45pm Grace Murray
Hopper extracted it and taped
it into the log book.

In fact the term bug to mean a
snag or defect was used by
Edison as early as 1878.

The Harvard Mark II Machine, an early
computer boasting magnetic drum storage.

“First actual case of bug being found”

Joe Hurd Formally Verified Endgame Tables 10 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

The First Software Bug

The EDSAC I became
operational on 6 May 1949,
printing a table of square
numbers.

The very next day the log
entry reports a software error.

Maurice Wilkes recalls the
experience of debugging a
program in June 1949:
“[T]he realization came over me

with full force that a good part of

the remainder of my life was going

to be spent in finding errors in my

own programs.”

The EDSAC I, the first stored program computer.

“Machine still operating - table of squares several
times. Table of primes attempted - programme

incorrect”

Joe Hurd Formally Verified Endgame Tables 11 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Serious Software Bugs

1985–1987: A particular
combination of operator key
presses on the Therac 25 radiation
treatment machine blasted the
patient with X-rays at 125 times
the recommended dose, resulting
in the death of 3 people.

4 June 1996: The $2B Ariane 5
rocket exploded on its maiden
flight because an assignment of a
64 bit number to a 16 bit buffer
overflowed. The Inertial Reference
System crashed and output a test
pattern. The rocket controller
interpreted this as real flight data,
changed direction, disintegrated
and self-destructed.

The Therac 25 radiation treatment machine.

The launch of the Ariane 5 rocket.

Joe Hurd Formally Verified Endgame Tables 12 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Endgame Table Software Bugs

Endgame tables have occasionally been found to contain errors:

1986: Thompson’s KQPKQ EGT was caveated as correct
only in the absence of underpromotion.

1987: Van Den Herik’s KRP(a2)KbBP(a3) EGT replaced
unavailable subgame EGTs with faulty chessic logic.

1999: RetroEngine’s EGTs assumed that the loser would
never make a capture.

2002: FEG’s KNNK EGT assumed that White could never
win, and in other EGTs sliding pieces could jump over pawns.

Joe Hurd Formally Verified Endgame Tables 13 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

What About Testing?

Testing is an effective technique for finding software bugs that
appear frequently.

Example: If you have a bug in your software that crashes the
computer every 1,000,000 hours on average, then:

you need 1,000,000 hours of testing to spot the bug;
but every day it will crash one of your 50,000 users.

Question: How do you know when to stop testing?

“Program testing can be used to show the presence of bugs,
but never to show their absence!” [Dijkstra]

Joe Hurd Formally Verified Endgame Tables 15 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Static Analysis

Static analysis is a program verification technique that is
complementary to testing.

Testing works by executing the program and checking its
run-time behavior.
Static analysis works by examining the text of the program.

Driven by new techniques, static analysis tools have recently
made great improvements in scope.

Example 1: Modern type systems can check data integrity
properties of programs at compile time.
Example 2: Abstract intepretation techniques can find
memory problems such as buffer overflows or dangling pointers.
Example 3: The TERMINATOR tool developed by Microsoft
Research can find infinite loops in Windows device drivers that
would cause the OS to hang.

Joe Hurd Formally Verified Endgame Tables 16 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Higher Order Logic Theorem Proving

Interactive theorem proving is a static analysis method.

The user makes logical definitions and applies tactics to
formally prove properties of them.

Higher order logic is expressive enough to naturally formalize
mathematics and verify software.

Example 1: Formalization of probability theory.
Example 2: Verification of the seL4 operating system kernel.

The main challenge is proof automation:

Joe Hurd Formally Verified Endgame Tables 17 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Theorem Provers in the LCF Design

A theorem Γ ` φ states “if all of
the hypotheses Γ are true, then so
is the conclusion φ”.

The novelty of Milner’s Edinburgh
LCF theorem prover was to make
theorem an abstract ML type.

Values of type theorem can only
be created by a small logical kernel
which implements the primitive
inference rules of the logic.

Soundness of the whole ML
theorem prover thus reduces to
soundness of the logical kernel.

HOL theorem prover ∼ the elephant
higher order logic ∼ the ball

Joe Hurd Formally Verified Endgame Tables 18 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Binary Decision Diagrams

Binary decision diagrams (BDDs)
are a representation of
propositional logic formulas.

Every path from root to leaf
respects a variable ordering, and
there is maximal sharing of
subterms.

Gordon created a set of inference
rules relating higher order logic
formulas and BDDs:

Γ ` t1 = t2 ∆ ` t1 7→ B

Γ ∪∆ ` t2 7→ B

x1

x2

0

x2

1

x3

0

x3

1

1

1

0

0

01 10

BDD http://upload.wikimedia.org/wikipedia/commons/1/14/BDD_si...

1 of 1 5/8/11 11:33 PM

A binary decision diagram representation
of (x1 ∧ x2) ∨ (¬x1 ∧ (x2 ≡ x3)).

Joe Hurd Formally Verified Endgame Tables 19 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Formalizing the Laws of Chess

Example: Define the set of squares that a rook attacks.

Joe Hurd Formally Verified Endgame Tables 21 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Formalizing the Laws of Chess (II)

Define the required types:

square ≡ N× N
position ≡

side× (square→ (side× piece) option)

Define the logical relation:
rookAttacks : position→ square→ square→ bool
rookAttacks p a b ≡

a 6= b ∧ (file a = file b ∨ rank a = rank b) ∧
∀c . betweenSquare a c b =⇒ emptySquare p c

Continue in this way to formalize a logical definition of
DTM : N→ position set

Joe Hurd Formally Verified Endgame Tables 22 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Computing Verified Endgame Tables

We build our verified endgame database in the usual way by
working backwards from checkmates, but symbolically using BDDs.

` decodePosition

(Black, [(White,King), (White,Rook),

(Black,King), (Black,Bishop)]))

[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,

x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23])

∈ DTM 28

7→ < 29, 907 >

Performance is sufficient to cover all 4 piece pawnless endgames.

Joe Hurd Formally Verified Endgame Tables 23 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Querying the Endgame Tables

Quiz: Find the only winning White move.

Joe Hurd Formally Verified Endgame Tables 24 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Querying the Endgame Tables (II)

Solution: Rf3 is checkmate in 29 (all other moves draw).

Joe Hurd Formally Verified Endgame Tables 25 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Querying the Endgame Tables (III)

Check the after-position by proving a theorem
using our verified endgame table:

` (Black,

λsq.

if sq = (3, 5) then Some (White,King)

else if sq = (5, 2) then Some (White,Rook)

else if sq = (1, 7) then Some (Black,King)

else if sq = (6, 7) then Some (Black,Bishop)

else None) ∈ DTM 28

Joe Hurd Formally Verified Endgame Tables 26 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Querying the Endgame Tables (IV)

In fact, we can prove that checkmate in 29 is
the longest possible win in the King and Rook
versus King and Bishop endgame:

` ∀p, n.
toMove p = White ∧
hasPieces p White [King,Rook] ∧
hasPieces p Black [King,Bishop] ∧
allPiecesOnBoard p ∧
p ∈ DTM n =⇒
p ∈ DTM 29

Joe Hurd Formally Verified Endgame Tables 27 / 29

Endgame Tables Software Errors Formal Verification Verified Endgame Tables Summary

Summary

The world’s first verified endgame table.

Can prove that position classification logically follows from
the laws of chess.

Constructed as a fully automatic algorithm implemented in
the HOL4 theorem prover.

Please get in touch if you are interested in finding out more:

joe@gilith.com

http://gilith.com/chess/endgames

Joe Hurd Formally Verified Endgame Tables 29 / 29

joe@gilith.com
http://gilith.com/chess/endgames

	Endgame Tables
	Software Errors
	Formal Verification
	Verified Endgame Tables
	Summary

