
Theorem Proving and Model Checking
(or: how to have your cake and eat it too)

Joe Hurd
joe.hurd@comlab.ox.ac.uk

Cakes Talk

Computing Laboratory
Oxford University

Theorem Proving and Model Checking – Joe Hurd – p.1/15

Theorem Proving

• LCF-style theorem proving emphasizes high assurance.
• Theorems can only be created by a logical kernel,

which implements the inference rules of the logic.

• Higher order logic is expressive enough to naturally
define many concepts of mathematics and formal
language semantics:
• probability via real analysis and measure theory;
• the Property Specification Language for hardware.

• The main challenge is proof automation.

Theorem Proving and Model Checking – Joe Hurd – p.2/15

Theorem Proving

Example: define the set of squares that a rook attacks.

Theorem Proving and Model Checking – Joe Hurd – p.3/15

Theorem Proving

• square ≡ N × N

position ≡ side × (square → (side × piece) option)

• rook_attacks p a b ≡

a 6= b ∧ (file a = file b ∨ rank a = rank b)
∧ ∀c. square_between a c b ⇒ empty p c

• The other rules of chess are similarly easy.
Theorem Proving and Model Checking – Joe Hurd – p.4/15

Model Checking

• Model checking emphasizes automation.
• Various efficient algorithms for deciding temporal

logic formulas on finite state models.

• High level input languages support the modelling and
checking of complex computer systems:
• IEEE Futurebus+ cache coherence protocol.

• The main challenge is to reduce problems to a form in
which they can be efficiently model checked.

Theorem Proving and Model Checking – Joe Hurd – p.5/15

Combination Methods

• Approach 1: add theorem proving techniques to model
checkers:
• disjunctive partitioning of transition relations;
• assume-guarantee reasoning;
• data abstraction.

• This approach allows state of the art model checkers to
tackle intractably large or even infinite state spaces.

Theorem Proving and Model Checking – Joe Hurd – p.6/15

Combination Methods

• Approach 2: implement model checking algorithms in
theorem provers.

• Gordon created a set of inference rules relating higher
order logic formulas and BDDs:

[a1] ` t1 = t2 [a2] t1 7→ b

[a1 ∪ a2] t2 7→ b

• Amjad implemented a modal µ-calculus model checker
called HolCheck as a derived inference rule in HOL4.
• The resulting theorems depend only on the inference

rules of HOL4 and the BuDDy BDD engine.
• Used to verify several correctness properties of the

AMBA bus architecture.

Theorem Proving and Model Checking – Joe Hurd – p.7/15

Verification Scripting Platform

• Higher order logic is a common semantics in which to
embed many logics.

• HOL4 can be used a scripting platform to implement
verification tools.
• Pro: No error-prone translation between tools.
• Con: Performance penalty for implementing as a

HOL4 derived rule (about 30% for HolCheck).

• Example: using a formalization of PSL semantics to
translate hardware properties to Verilog monitors.

• This talk: using a formalization of the rules of chess to
construct a verified chess endgame database.

Theorem Proving and Model Checking – Joe Hurd – p.8/15

Chess Endgame Databases

• Can solve certain classes of chess endgame by
enumerating all positions in a database.
• Compute depth to mate by working backwards from

the checkmate positions.

• Correctness is summed up by the following quotation:

Both [Nalimov’s endgame databases] and those of Wirth yield

exactly the same number of mutual zugzwangs [...] for all 2-to-5 man

endgames and no errors have yet been discovered.

• Ideally, we’d like to prove that the endgame database
logically followed from the rules of chess.

Theorem Proving and Model Checking – Joe Hurd – p.9/15

Verified Endgame Databases

We build our verified endgame database by working
backwards from checkmates, but symbolically using BDDs.

[] abstract

(decoder

(posn_coder

(Black, [(White, King); (White, Rook);

(Black, King); (Black, Bishop)]))

[b0; b1; b2; b3; b4; b5; b6; b7; b8; b9; b10; b11;

b12; b13; b14; b15; b16; b17; b18; b19; b20; b21; b22; b23])

∈ win2_by chess 28

7→

<29,907>

Theorem Proving and Model Checking – Joe Hurd – p.10/15

Verified Endgame Databases

One White move is checkmate in 29, all others draw.
What is the winning move?

Theorem Proving and Model Checking – Joe Hurd – p.11/15

Verified Endgame Databases

Rf3!!

Theorem Proving and Model Checking – Joe Hurd – p.12/15

Verified Endgame Databases

The result of querying our verified
endgame database on this position:

` (Black,

λx.

if x = (3, 5) then SOME (White, King)

else if x = (5, 2) then SOME (White, Rook)

else if x = (1, 7) then SOME (Black, King)

else if x = (6, 7) then SOME (Black, Bishop)

else NONE) ∈ win2_by chess 28 ∧ · · ·

Theorem Proving and Model Checking – Joe Hurd – p.13/15

Verified Endgame Databases

In fact, checkmate in 29 is the longest
possible win in the King and Rook versus
King and Bishop endgame.

` ∀p.

all_on_board p ∧ to_move p = White ∧

has_pieces p White [King; Rook] ∧

has_pieces p Black [King; Bishop] ⇒

p ∈ win1 chess ⇐⇒ p ∈ win1_by chess 28

Theorem Proving and Model Checking – Joe Hurd – p.14/15

Conclusion

• The first verified chess endgame database.
• Query results logically follow from the rules of chess.

• Created by a combination of theorem proving and
model checking.
• Implemented as a HOL4 derived rule (with BDDs).

• Can solve all four piece pawnless endgames without
any performance tuning.
• Ken Thompson solved most five piece endgames,

and the state of the art is now six piece endgames.

• Have put up some educational web pages showing the
best lines of defence.
• Checkmating a bare King with King, Bishop and

Knight is something that beginners struggle to learn.
Theorem Proving and Model Checking – Joe Hurd – p.15/15

	Theorem Proving
	Theorem Proving
	Theorem Proving
	Model Checking
	Combination Methods
	Combination Methods
	Verification Scripting Platform
	Chess Endgame Databases
	Verified Endgame Databases
	Verified Endgame Databases
	Verified Endgame Databases
	Verified Endgame Databases
	Verified Endgame Databases
	Conclusion

