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Theorem Proving

• LCF-style theorem proving emphasizes high assurance.
• Theorems can only be created by a logical kernel,

which implements the inference rules of the logic.

• Higher order logic is expressive enough to naturally
define many concepts of mathematics and formal
language semantics:
• probability via real analysis and measure theory;
• the Property Specification Language for hardware.

• The main challenge is proof automation.
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Theorem Proving

Example: define the set of squares that a rook attacks.
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Theorem Proving

• square ≡ N × N

position ≡ side × (square → (side × piece) option)

• rook_attacks p a b ≡

a 6= b ∧ (file a = file b ∨ rank a = rank b)
∧ ∀c. square_between a c b ⇒ empty p c

• The other rules of chess are similarly easy.
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Model Checking

• Model checking emphasizes automation.
• Various efficient algorithms for deciding temporal

logic formulas on finite state models.

• High level input languages support the modelling and
checking of complex computer systems:
• IEEE Futurebus+ cache coherence protocol.

• The main challenge is to reduce problems to a form in
which they can be efficiently model checked.
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Combination Methods

• Approach 1: add theorem proving techniques to model
checkers:
• disjunctive partitioning of transition relations;
• assume-guarantee reasoning;
• data abstraction.

• This approach allows state of the art model checkers to
tackle intractably large or even infinite state spaces.
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Combination Methods

• Approach 2: implement model checking algorithms in
theorem provers.

• Gordon created a set of inference rules relating higher
order logic formulas and BDDs:

[a1] ` t1 = t2 [a2] t1 7→ b

[a1 ∪ a2] t2 7→ b

• Amjad implemented a modal µ-calculus model checker
called HolCheck as a derived inference rule in HOL4.
• The resulting theorems depend only on the inference

rules of HOL4 and the BuDDy BDD engine.
• Used to verify several correctness properties of the

AMBA bus architecture.
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Verification Scripting Platform

• Higher order logic is a common semantics in which to
embed many logics.

• HOL4 can be used a scripting platform to implement
verification tools.
• Pro: No error-prone translation between tools.
• Con: Performance penalty for implementing as a

HOL4 derived rule (about 30% for HolCheck ).

• Example: using a formalization of PSL semantics to
translate hardware properties to Verilog monitors.

• This talk: using a formalization of the rules of chess to
construct a verified chess endgame database.
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Chess Endgame Databases

• Can solve certain classes of chess endgame by
enumerating all positions in a database.
• Compute depth to mate by working backwards from

the checkmate positions.

• Correctness is summed up by the following quotation:

Both [Nalimov’s endgame databases] and those of Wirth yield

exactly the same number of mutual zugzwangs [...] for all 2-to-5 man

endgames and no errors have yet been discovered.

• Ideally, we’d like to prove that the endgame database
logically followed from the rules of chess.
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Verified Endgame Databases

We build our verified endgame database by working
backwards from checkmates, but symbolically using BDDs.

[] abstract

(decoder

(posn_coder

(Black, [(White, King); (White, Rook);

(Black, King); (Black, Bishop)]))

[b0; b1; b2; b3; b4; b5; b6; b7; b8; b9; b10; b11;

b12; b13; b14; b15; b16; b17; b18; b19; b20; b21; b22; b23])

∈ win2_by chess 28

7→

<29,907>
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Verified Endgame Databases

One White move is checkmate in 29, all others draw.
What is the winning move?
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Verified Endgame Databases

Rf3!!
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Verified Endgame Databases

The result of querying our verified
endgame database on this position:

` (Black,

λx.

if x = (3, 5) then SOME (White, King)

else if x = (5, 2) then SOME (White, Rook)

else if x = (1, 7) then SOME (Black, King)

else if x = (6, 7) then SOME (Black, Bishop)

else NONE) ∈ win2_by chess 28 ∧ · · ·
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Verified Endgame Databases

In fact, checkmate in 29 is the longest
possible win in the King and Rook versus
King and Bishop endgame.

` ∀p.

all_on_board p ∧ to_move p = White ∧

has_pieces p White [King; Rook] ∧

has_pieces p Black [King; Bishop] ⇒

p ∈ win1 chess ⇐⇒ p ∈ win1_by chess 28
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Conclusion

• The first verified chess endgame database.
• Query results logically follow from the rules of chess.

• Created by a combination of theorem proving and
model checking.
• Implemented as a HOL4 derived rule (with BDDs).

• Can solve all four piece pawnless endgames without
any performance tuning.
• Ken Thompson solved most five piece endgames,

and the state of the art is now six piece endgames.

• Have put up some educational web pages showing the
best lines of defence.
• Checkmating a bare King with King, Bishop and

Knight is something that beginners struggle to learn.
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