Automated Reasoning Methods Used to Prove the Robbins Conjecture

Joe Hurd

joe.hurd@comlab.ox.ac.uk.

Intelligent Systems I

Computer Science University of Oxford

Definition (George Boole 1854)
 Boolean algebras satisfy the following ten axioms:

•
$$x \cup y = y \cup x$$

• $x \cup (y \cup z) = (x \cup y) \cup z$
• $x \cup (x \cap y) = x$
• $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
• $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
• $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
• $x \cup \overline{x} = 1$
• $x \cap \overline{x} = 0$

• See Boole's classic book An investigation into the Laws of Thought.

- Theorem (E. V. Huntington 1933) The following three equations are a basis for Boolean algebras:
 - $x \cup y = y \cup x$ (Commutativity)
 - $x \cup (y \cup z) = (x \cup y) \cup z$ (Associativity) • $\overline{x} \cup \overline{y} \cup \overline{x} \cup y = x$ (Huntington equation)
- Plus: $x \cap y \equiv \overline{\overline{x} \cup \overline{y}}$, $0 \equiv x \cap \overline{x}$, and $1 \equiv x \cup \overline{x}$.
- These three equations being a basis means:
 - Each equation must follow from the axioms for Boolean algebras. (Easy)
 - No equation must follow from the others. (Easy)
 - Each Boolean algebra axiom must follow from these equations. (Hard part)

- Conjecture (Herbert Robbins 1933) The following three equations are a basis for Boolean algebras:
 - $x \cup y = y \cup x$ (Commutativity)
 - $x \cup (y \cup z) = (x \cup y) \cup z$ (Associativity) • $\overline{\overline{x \cup y} \cup \overline{x \cup \overline{y}}} = x$ (Robbins equation)
- Note: the Robbins equation is simpler than the Huntington equation (one fewer occurrence of ⁻).
- It is sufficient to show that the Huntington equation holds in these so-called *Robbins algebras*.
- Tarski worked on the problem, and gave it to graduate students and visiting mathematicians.

• Theorem (William McCune 1997) Robbins algebras are Boolean.

Proof: McCune implemented an automated reasoning system called EQP which found a proof that showed the Huntington equation logically followed from the equations for Robbins algebras.

• In this lecture: some of the automated reasoning methods used to prove the Robbins Conjecture.

Reasoning in First Order Logic

 Resolution for first order logic was invented by Alan Robinson in 1965.

$$\frac{A \lor C \quad \neg B \lor D}{(C \lor D)[\sigma]}$$

where $\sigma = mgu(A, B)$.

- The same as resolution for propositional logic.
- Unification used to set first order logic variables.
- To be complete it also needs the factorization rule:

$$\frac{A \lor B \lor C}{(A \lor C)[\sigma]}$$

where $\sigma = mgu(A, B)$.

First Order Logic with Equality

- Resolution is complete for first order logic, but not for first order logic with equality.
 - The set of clauses $\{\neg(c=c)\}$ is unsatisfiable, but resolution can't find a contradiction.
- The problem is that resolution implicitly considers all models, but we only want to consider normal models in which '=' is interpreted as equality.
 - In the above example, the clause set is satisfiable if we interpret '=' as a binary relation that is always false.

First Order Logic with Equality

- Restrict to normal models by adding equality axioms.
- Equality is an *equivalence relation*:
 - (reflexivity) • $\forall x. x = x$ (symmetry)

•
$$\forall x, y. \ x = y \Rightarrow y = x$$

•
$$\forall x, y, z. \ x = y \land y = z \Rightarrow x = z$$

• Equality is a *congruence*:

- For each *n*-ary function symbol *f*, add the axiom $\forall x_1,\ldots,x_n,y_1,\ldots,y_n.$ $x_1 = y_1 \wedge \dots \wedge x_n = y_n \Rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ • For each *n*-ary relation symbol *R*, add the axiom
 - $\forall x_1,\ldots,x_n,y_1,\ldots,y_n.$ $x_1 = y_1 \wedge \dots \wedge x_n = y_n \wedge R(x_1, \dots, x_n) \Rightarrow R(y_1, \dots, y_n)$

(transitivity)

First Order Logic with Equality

 Theorem: The set of formulas ∆ ∪ EqualityAxioms(∆) is satisfiable if and only if the set of formulas ∆ is satisfiable in a normal model.

Proof: (\Leftarrow): Easy, since EqualityAxioms(Δ) is satisfied in any normal model.

(\Rightarrow): Let *M* be a model in which $\Delta \cup \text{EqualityAxioms}(\Delta)$ is satisfied. Quotient *M* by the equivalence relation M(=) to obtain a normal model in which Δ is satisfied. \Box

• Corollary: Adding equality axioms makes resolution complete for first order logic with equality.

Paramodulation

- Though complete, resolution with equality axioms is not efficient enough to prove the Robbins conjecture :-(
- Much more powerful is the paramodulation rule:

$$\frac{C \lor s \doteq t \quad D \lor P[s']}{(C \lor D \lor P[t])[\sigma]}$$

where $\sigma = mgu(s, s')$ and s' is a non-variable.

 Theorem (Brand 1975) Paramodulation plus resolution and the reflexivity axiom is refutationally complete for first order logic with equality.

Paramodulation Refinements

- Paramodulation has been in use since the 1960s, and is not efficient enough to prove the Robbins conjecture :-(
- McCune implemented three main refinements of paramodulation to find a proof:
 - Demodulation.
 - The basic strategy.
 - AC unification and matching.

Demodulation

- Suppose we have derived an equation l = r, where:
 - the size of the term l is greater than the size of the term r; and
 - no variable appears more often in r than l.
- The demodulation rule is as follows:

$$\frac{C \vee P[l[\sigma]]}{C \vee P[r[\sigma]]}$$

- Demodulation is used to simplify clauses and allow more unification.
- Resolution and paramodulation plus demodulation is still refutationally complete.

The Basic Strategy

Consider the paramodulation step

$$\frac{f(x) = h(x) \quad P(f(g(y)))}{P(h(g(y)))}$$

- In the conclusion it is redundant to apply paramodulation into the term g(y), since we could have done that before applying this rule.
- The basic strategy generalizes this by blocking paramodulation at any term introduced as part of the substitution.
- The basic strategy cuts down the search space.
- Resolution and paramodulation with the basic strategy is refutationally complete, even when combined with demodulation.

AC Unification

- The terms $f(x) \cup c \cup h(x)$ and $h(c) \cup c \cup f(y)$ do not unify.
- But if the unification procedure knew that ∪ was Associative and Commutative, then {x → c, y → c} would be a valid unifier: this is AC unification.
- Potential problem: Given two terms both of the form $t_1 \cup \cdots \cup t_n$, AC unification can produce n! unifiers.
- Solution: EQP uses a heuristic called the super-0 strategy to restrict the number of unifiers.
 - Given the terms $x \cup x \cup x$ and $y \cup z \cup u \cup v$:
 - without super-0 gives 1,044,569 unifiers; and
 - with super-0 gives 139 unifiers.
- The super-0 strategy makes EQP theoretically incomplete (though not observed in practice).

Proving the Robbins Conjecture

- With all these refinements implemented in EQP, McCune was able to automatically prove the Robbins conjecture :-)
- It was the first case where a computer had found a checkable proof of a theorem that real mathematicians had failed on.
- The New York Times printed a story about it.
 - Robbins, then an 81 year old mathematician working at Rutgers, was quoted as saying "I'm glad I lived long enough to see it".
 - McCune on automated reasoning: "It's best, he said, to think of a computer as "just another colleague, one that is sometimes helpful, but often not."