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History of the Robbins Conjecture

• Definition (George Boole 1854)
Boolean algebras satisfy the following ten axioms:
• x ∪ y = y ∪ x • x ∩ y = y ∩ x

• x ∪ (y ∪ z) = (x ∪ y) ∪ z • x ∩ (y ∩ z) = (x ∩ y) ∩ z

• x ∪ (x ∩ y) = x • x ∩ (x ∪ y) = x

• x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)

• x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)

• x ∪ x = 1 • x ∩ x = 0

• See Boole’s classic book An investigation into the Laws
of Thought.
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History of the Robbins Conjecture

• Theorem (E. V. Huntington 1933)
The following three equations are a basis for Boolean
algebras:
• x ∪ y = y ∪ x (Commutativity)
• x ∪ (y ∪ z) = (x ∪ y) ∪ z (Associativity)
• x ∪ y ∪ x ∪ y = x (Huntington equation)

• Plus: x ∩ y ≡ x ∪ y, 0 ≡ x ∩ x, and 1 ≡ x ∪ x.

• These three equations being a basis means:
• Each equation must follow from the axioms for

Boolean algebras. (Easy)
• No equation must follow from the others. (Easy)
• Each Boolean algebra axiom must follow from these

equations. (Hard part)
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History of the Robbins Conjecture

• Conjecture (Herbert Robbins 1933)
The following three equations are a basis for Boolean
algebras:
• x ∪ y = y ∪ x (Commutativity)
• x ∪ (y ∪ z) = (x ∪ y) ∪ z (Associativity)
• x ∪ y ∪ x ∪ y = x (Robbins equation)

• Note: the Robbins equation is simpler than the
Huntington equation (one fewer occurrence of x).

• It is sufficient to show that the Huntington equation
holds in these so-called Robbins algebras.

• Tarski worked on the problem, and gave it to graduate
students and visiting mathematicians.
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History of the Robbins Conjecture

• Theorem (William McCune 1997)
Robbins algebras are Boolean.

Proof: McCune implemented an automated reasoning
system called EQP which found a proof that showed the
Huntington equation logically followed from the
equations for Robbins algebras. �

• In this lecture: some of the automated reasoning
methods used to prove the Robbins Conjecture.
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Reasoning in First Order Logic

• Resolution for first order logic was invented by Alan
Robinson in 1965.

A ∨ C ¬B ∨ D

(C ∨ D)[σ]

where σ = mgu(A, B).

• The same as resolution for propositional logic.

• Unification used to set first order logic variables.

• To be complete it also needs the factorization rule:

A ∨ B ∨ C

(A ∨ C)[σ]

where σ = mgu(A, B).
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First Order Logic with Equality

• Resolution is complete for first order logic, but not for
first order logic with equality.

• The set of clauses {¬(c = c)} is unsatisfiable, but
resolution can’t find a contradiction.

• The problem is that resolution implicitly considers all
models, but we only want to consider normal models in
which ‘=’ is interpreted as equality.
• In the above example, the clause set is satisfiable if

we interpret ‘=’ as a binary relation that is always
false.
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First Order Logic with Equality

• Restrict to normal models by adding equality axioms.

• Equality is an equivalence relation:
• ∀x. x = x (reflexivity)
• ∀x, y. x = y ⇒ y = x (symmetry)
• ∀x, y, z. x = y ∧ y = z ⇒ x = z (transitivity)

• Equality is a congruence:
• For each n-ary function symbol f , add the axiom
∀x1, . . . , xn, y1, . . . , yn.

x1 = y1 ∧ · · · ∧xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

• For each n-ary relation symbol R, add the axiom
∀x1, . . . , xn, y1, . . . , yn.

x1 = y1 ∧ · · · ∧xn = yn ∧R(x1, . . . , xn) ⇒ R(y1, . . . , yn)
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First Order Logic with Equality

• Theorem: The set of formulas ∆ ∪ EqualityAxioms(∆) is
satisfiable if and only if the set of formulas ∆ is
satisfiable in a normal model.

Proof: (⇐): Easy, since EqualityAxioms(∆) is satisfied
in any normal model.
(⇒): Let M be a model in which ∆ ∪ EqualityAxioms(∆)
is satisfied. Quotient M by the equivalence relation
M(=) to obtain a normal model in which ∆ is
satisfied. �

• Corollary: Adding equality axioms makes resolution
complete for first order logic with equality.
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Paramodulation

• Though complete, resolution with equality axioms is not
efficient enough to prove the Robbins conjecture :-(

• Much more powerful is the paramodulation rule:

C ∨ s =̇ t D ∨ P [s′]

(C ∨ D ∨ P [t])[σ]

where σ = mgu(s, s′) and s′ is a non-variable.

• Theorem (Brand 1975)
Paramodulation plus resolution and the reflexivity axiom
is refutationally complete for first order logic with
equality.

Automated Reasoning Methods Used to Prove the Robbins Conjecture – Joe Hurd – p.10/15



Paramodulation Refinements

• Paramodulation has been in use since the 1960s, and is
not efficient enough to prove the Robbins conjecture :-(

• McCune implemented three main refinements of
paramodulation to find a proof:
• Demodulation.
• The basic strategy.
• AC unification and matching.
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Demodulation

• Suppose we have derived an equation l = r, where:
• the size of the term l is greater than the size of the

term r; and
• no variable appears more often in r than l.

• The demodulation rule is as follows:

C ∨ P [l[σ]]

C ∨ P [r[σ]]

• Demodulation is used to simplify clauses and allow
more unification.

• Resolution and paramodulation plus demodulation is
still refutationally complete.
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The Basic Strategy
• Consider the paramodulation step

f(x) = h(x) P (f(g(y))

P (h(g(y)))

• In the conclusion it is redundant to apply
paramodulation into the term g(y), since we could have
done that before applying this rule.

• The basic strategy generalizes this by blocking
paramodulation at any term introduced as part of the
substitution.

• The basic strategy cuts down the search space.

• Resolution and paramodulation with the basic strategy
is refutationally complete, even when combined with
demodulation.
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AC Unification

• The terms f(x)∪ c∪ h(x) and h(c)∪ c∪ f(y) do not unify.

• But if the unification procedure knew that ∪ was
Associative and Commutative, then {x 7→ c, y 7→ c}
would be a valid unifier: this is AC unification.

• Potential problem: Given two terms both of the form
t1 ∪ · · · ∪ tn, AC unification can produce n! unifiers.

• Solution: EQP uses a heuristic called the super-0
strategy to restrict the number of unifiers.
• Given the terms x ∪ x ∪ x and y ∪ z ∪ u ∪ v:
• without super-0 gives 1,044,569 unifiers; and
• with super-0 gives 139 unifiers.

• The super-0 strategy makes EQP theoretically
incomplete (though not observed in practice).

Automated Reasoning Methods Used to Prove the Robbins Conjecture – Joe Hurd – p.14/15



Proving the Robbins Conjecture

• With all these refinements implemented in EQP,
McCune was able to automatically prove the Robbins
conjecture :-)

• It was the first case where a computer had found a
checkable proof of a theorem that real mathematicians
had failed on.

• The New York Times printed a story about it.

• Robbins, then an 81 year old mathematician working
at Rutgers, was quoted as saying “I’m glad I lived
long enough to see it”.

• McCune on automated reasoning: “It’s best, he said,
to think of a computer as "just another colleague,
one that is sometimes helpful, but often not.”
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