
Assertion Based Verification
Joe Hurd

joe.hurd@comlab.ox.ac.uk

CARD Group

Computing Laboratory
Oxford University

Assertion Based Verification – Joe Hurd – p.1/18

Contents

• Introduction
• Verified Checkers

• An Example Formula

• Conclusion

Assertion Based Verification – Joe Hurd – p.2/18

Assertion Based Verification

• Verification takes 70% of the hardware design cycle.

• Producing a specification of a circuit can be hard.

• Often much easier to write formulas (assertions) that
describe error conditions.

• Testing can simulate the circuit, and report a bug if
an error occurs. This talk.
• Formal verification can prove that these errors can

never happen.

• This is Assertion Based Verification.

• Need a logic in which to write assertions.

Assertion Based Verification – Joe Hurd – p.3/18

PSL

• IBM’s Sugar 2.0 language won a competition run by
Accellera to find an industry standard assertion
language.

• It was then renamed Accellera Property Specification
Langauage (PSL).

• “PSL is an intuitive, declarative language for describing
behaviour over time.” [IBM]

• This talk: the Temporal Layer of PSL, essentially LTL
with regular expressions:

Assertion Based Verification – Joe Hurd – p.4/18

Inside Temporal PSL

• Boolean Expressions
• Evaluated on a single state.

• Sequential Extended Regular Expressions (SEREs)
• Evaluated on a finite sequence of states.

• Foundation Language Formulas
• Evaluated on a finite or infinite path of states.
• This talk: will only consider infinite paths.

Assertion Based Verification – Joe Hurd – p.5/18

Verilog Checkers

• Suppose we have a circuit written in Verilog,

• and a PSL formula that we would like to hold of every
simulation run of the circuit.
• Think of a simulation run as an infinite path of states.

• We can code up the formula as a Verilog module that
monitors the circuit.
• But how to avoid bugs?

• Using HOL4, we can verify a translation from the PSL
formula to a deterministic finite automaton.
• The DFA is guaranteed to produce an error iff the

PSL formula is violated on the simulation path.
• Thanks to Mike Gordon’s formalization of PSL.

Assertion Based Verification – Joe Hurd – p.6/18

Contents

• Introduction

• Verified Checkers
• An Example Formula

• Conclusion

Assertion Based Verification – Joe Hurd – p.7/18

Safety Violations

• Given a checking automaton for the PSL formula f ,

• and an infinite path p,

• when can the automaton report a property violation?

safety_violation p f ≡ ∃n. ∀q. |q| =∞⇒ ¬(p0,nq |= f)

p0 p1 · · · pn︸ ︷︷ ︸
bad prefix

• • • • • • · · · |= ¬f

• If the bad prefixes form a regular language, then we can
detect safety violations with a finite state automaton.

Assertion Based Verification – Joe Hurd – p.8/18

Verified Checkers

• This is what we proved about checker automata:

` ∀f, p.
|p| =∞∧ simple f ⇒
(safety_violation p f ⇐⇒ ∃n. p0,n |= checker f)

• checker maps a PSL formula to a PSL SERE.

• Not enough to have an implication, because otherwise
a trivial checker > or ⊥ would suffice.

• Condition 1: p is an infinite path.

• Condition 2: f is a simple formula.

Assertion Based Verification – Joe Hurd – p.9/18

Checkers: Next

• The next operator ‘postpones’ a formula by one step:

` w |= next f ⇐⇒ |w| > 0 ∧ w1 |= f

• Next formulas are simple:

` ∀f. simple f ⇒ simple (next f)

• Next checkers just prepend the SERE {>}:

` checker (next f) = {>}; {checker f}

Assertion Based Verification – Joe Hurd – p.10/18

Checkers: Until

• The weak until operator is defined thus:

` w |= f until g ⇐⇒
∀j ∈ [0..|w|). wj |= f ⇒ ∃k ∈ [0..j + 1). wk |= g

• The condition for weak until formulas to be simple:

` ∀f, g. simple f ∧ boolean g ⇒ simple (f until g)

• Weak until checkers are defined as

` checker (f until g) ≡
{(boolean_checker g)[∗]};
{{checker f} u {boolean_checker g}}

Assertion Based Verification – Joe Hurd – p.11/18

Creating Verilog Checkers

• Take the SERE output of the checker, and lazily convert
to a nondeterministic finite automaton (NFA).

• Compute the reachable states of the deterministic finite
automaton (DFA) via transition theorems:

` ∀c.
REQ /∈ c ∧ ACK ∈ c⇒
transitionD [6] c = [2; 4]

• Finally, print the whole DFA as a Verilog module.
• An informal step, could introduce bugs :-(

Assertion Based Verification – Joe Hurd – p.12/18

Contents

• Introduction

• Verified Checkers

• An Example Formula
• Conclusion

Assertion Based Verification – Joe Hurd – p.13/18

Example: PSL Formula

From page 45 of the Accellera PSL Reference Manual:

c ∧ next (a until b)

Their example actually uses strong until, we’ll use weak
until instead.

Assertion Based Verification – Joe Hurd – p.14/18

Example: SERE

|- checker (...example PSL formula...) =

S_OR

(S_BOOL (B_NOT (B_PROP c)),

S_CAT

(S_BOOL B_TRUE,

S_CAT

(S_REPEAT (S_BOOL (B_NOT (B_PROP b))),

S_OR

(S_AND

(S_BOOL (B_NOT (B_PROP a)),

S_CAT

(S_BOOL (B_NOT (B_PROP b)),

S_REPEAT (S_BOOL B_TRUE))),

S_AND

(S_CAT

(S_BOOL (B_NOT (B_PROP a)),

S_REPEAT (S_BOOL B_TRUE)),

S_BOOL (B_NOT (B_PROP b)))))))

Assertion Based Verification – Joe Hurd – p.15/18

Example: Verilog Module
module Checker (a, b, c);

input a, b, c;

reg [2:0] state;

initial state = 0;

always @ (a or b or c)

begin

case (state)

0: if (c) state = 5; else state = 1;

1: begin $display ("Checker: property violated!"); $finish; end

2: begin $display ("Checker: property violated!"); $finish; end

3: state = 3;

4: if (a) if (b) state = 3; else state = 4;

else if (b) state = 3; else state = 2;

5: if (a) if (b) state = 3; else state = 4;

else if (b) state = 3; else state = 2;

default: begin $display ("Checker: unknown state"); $finish; end

endcase

end

endmodule

Assertion Based Verification – Joe Hurd – p.16/18

Contents

• Introduction

• Verified Checkers

• An Example Formula

• Conclusion

Assertion Based Verification – Joe Hurd – p.17/18

Conclusion

• An interesting exercise that covers a wide range of
formulas while staying within PSL.

• Real world applications of the Verilog checkers?
• Require (verified) state minimization to be practical.

• Future Work: To extend our coverage, must drop
SEREs as intermediate language.
• Would like to implement weak suffix implication
{·} 7→ {·} which is in the Accellera simple subset.

Assertion Based Verification – Joe Hurd – p.18/18

	Contents
	Assertion Based Verification
	PSL
	Inside Temporal PSL
	Verilog Checkers
	Contents
	Safety Violations
	Verified Checkers
	Checkers: Next
	Checkers: Until
	Creating Verilog Checkers
	Contents
	Example: PSL Formula
	Example: SERE
	Example: Verilog Module
	Contents
	Conclusion

