
Formal Verification of Probabilistic
Programs: Two Approaches

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and
Carroll Morgan (University of New South Wales)

Formal Verification of Probabilistic Programs – Joe Hurd – p.1/57

Contents

• Introduction
• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.2/57

Introduction

Probabilistic programs are useful for many applications:

• Symmetry breaking
• Rabin’s mutual exclusion algorithm

• Eliminating pathological cases
• Miller-Rabin primality test

• Algorithm complexity
• Sorting nuts and bolts

• Defeating a powerful adversary
• Mixed strategies in game theory

• Solving a problem in an extremely simple way
• Finding minimal cuts

Formal Verification of Probabilistic Programs – Joe Hurd – p.3/57

Introduction

• Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

if length elements <= 1 then elements

else

let

val pivot = choose_pivot elements

val (left, right) = partition pivot elements

in

quicksort left @ [pivot] @ quicksort right

end;

• Usually O(n log n) comparisons, unless choice of pivot
interacts badly with data.

Formal Verification of Probabilistic Programs – Joe Hurd – p.4/57

Introduction

• Example of bad behaviour when pivot is first element:

input: [5, 4, 3, 2, 1]

pivot 5: [4, 3, 2, 1]--5--[]

pivot 4: [3, 2, 1]--4--[]

pivot 3: [2, 1]--3--[]

pivot 2: [1]--2--[]

output: [1, 2, 3, 4, 5]

• Lists in reverse order take O(n2) comparisons.

• So do lists that are in the right order!

Formal Verification of Probabilistic Programs – Joe Hurd – p.5/57

Introduction

• Solution: Introduce randomization into the algorithm
itself.

• Pick pivots uniformly at random from the list of
elements.

• Every list has exactly the same performance profile:

• Expected number of comparisons is O(n log n).
• Small class C ⊂ Sn of lists with guaranteed bad

performance has been replaced with a small
probability |C|/n! of bad performance on any input.

Formal Verification of Probabilistic Programs – Joe Hurd – p.6/57

Introduction

• Broken procedure for choosing a pivot:

fun choose_pivot elements =

if length elements = 1 orelse coin_flip ()

then hd elements

else choose_pivot (tl elements);

• Not a uniform distribution when length of elements > 2.

• Actually reinstates a bad class of input lists taking O(n2)
(expected) comparisons.

• Would like to verify probabilistic programs in a theorem
prover.

Formal Verification of Probabilistic Programs – Joe Hurd – p.7/57

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release in mid-2002 called HOL4, developed
jointly by Cambridge, Utah and ANU.

• Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

• Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

• Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

Formal Verification of Probabilistic Programs – Joe Hurd – p.8/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.9/57

Introduction: Monads

To verify a probabilistic program in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic program in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the program satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

Formal Verification of Probabilistic Programs – Joe Hurd – p.10/57

Contents

• Introduction

• Approach 1: Monads

• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.11/57

Formalizing Probability

• Need to construct a probability space of Bernoulli(1
2)

sequences, to give meaning to specifications like

P {s | fst (prob_program n s) = failure}

• To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

• Use measure theory, and end up with a set E of events
and a probability function P:

E = {S ⊂ B∞ | S is a measurable set}
P(S) = the probability measure of S (for S ∈ E)

Formal Verification of Probabilistic Programs – Joe Hurd – p.12/57

Formalizing Probability

• Formalized some general measure theory in HOL,
including Carathéodory’s extension theorem.

• Next defined the measure of prefix sets (or cylinders):

∀ l. µ {s0s1s2 · · · | [s0, . . . , sn−1] = l} = 2−(length l)

• Finally extended this measure to a σ-algebra:

E = σ(prefix sets)

P = Carathéodory extension of µ to E

• Similar to the definition of Lebesgue measure.

Formal Verification of Probabilistic Programs – Joe Hurd – p.13/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability

• Modelling Probabilistic
Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.14/57

Modelling Probabilistic Programs

• Given a probabilistic ‘function’:

f̂ : α→ β

• Model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

that passes around ‘an infinite sequence of coin-flips.’

• The probability that f̂(a) meets a specification
B : β → B can then be formally defined as

P {s | B(fst (f a s))}

Formal Verification of Probabilistic Programs – Joe Hurd – p.15/57

Modelling Probabilistic Programs

• Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unit a = λ s. (a, s)

bind f g = λ s. let (x, s′)← f(s) in g x s′

coin_flip f g = λ s. (if shd s then f else g, stl s)

• For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (λx. bind dice (λ y. unit (x+ y)))

generates the sum of two dice.

Formal Verification of Probabilistic Programs – Joe Hurd – p.16/57

Example: The Binomial(n, 1
2) Distribution

• Definition of a sampling algorithm for the Binomial(n, 1
2)

distribution:

` bit = coin_flip (unit 1) (unit 0)

` binomial 0 = unit 0 ∧
∀n.

binomial (suc n) =

bind bit (λx. bind (binomial n) (λ y. unit (x+ y)))

• Correctness theorem:

` ∀n, r. P {s | fst (binomial n s) = r} =

(
n

r

)(
1
2

)n

Formal Verification of Probabilistic Programs – Joe Hurd – p.17/57

Probabilistic Termination

• The Binomial(n, 1
2) sampling algorithm is guaranteed to

terminate within n coin-flips.

• The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

1

2

3

4

5

6

0

• The backward loops
introduce the possibility
of looping forever.

• But the probability of this
happening is 0.

• Probabilistic termination:
the program terminates
with probability 1.

Formal Verification of Probabilistic Programs – Joe Hurd – p.18/57

Probabilistic Termination

• Probabilistic termination is more expressive than
guaranteed termination.

• No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:
• Uniform(3): choosing one of 0, 1, 2 each with

probability 1
3 .

• Geometric(1
2): choosing n ∈ N with probability (1

2)n+1.
The index of the first head in a sequence of coin-flips.

• We model probabilistic termination in HOL using a
probabilistic while loop:

` ∀ c, b, a.
while c b a = if c(a) then bind (b a) (while c b) else unit a

Formal Verification of Probabilistic Programs – Joe Hurd – p.19/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs

• Example Verifications
• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.20/57

Example: The Uniform(3) Distribution

• First make a raw definition of unif3:

` unif3 =

while (λn. n = 3)

(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

• Next prove unif3 satisfies probabilistic termination.

• This allows us to derive a recursive definition of unif3:

` unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

• The correctness theorem also follows:

` ∀n. P {s | fst (unif3 s) = n} = if n < 3 then 1
3 else 0

Formal Verification of Probabilistic Programs – Joe Hurd – p.21/57

Example: Optimal Dice

A probabilistic finite state automaton:

1

2

3

4

5

6

0

dice =

coin flip

(prob repeat

(coin flip

(coin flip

(unit none)

(unit (some 1)))

(mmap some

(coin flip

(unit 2)

(unit 3)))))

(prob repeat

(coin flip

(mmap some

(coin flip

(unit 4)

(unit 5)))

(coin flip

(unit (some 6))

(unit none))))

Formal Verification of Probabilistic Programs – Joe Hurd – p.22/57

Example: Optimal Dice

• Correctness theorem:

` ∀n. P {s | fst (dice s) = n} = if 1 ≤ n ∧ n ≤ 6 then 1
6 else 0

• The dice program takes 32
3 coin flips (on average) to

output a dice throw.

• Knuth and Yao (1976) show this to be optimal.

• To generate the sum of two dice throws, is it possible to
do better than 71

3 coin flips?

Formal Verification of Probabilistic Programs – Joe Hurd – p.23/57

Example: Optimal Dice
On average, this program
takes 4 7

18 coin flips to pro-
duce a result, and this is
also optimal.

` ∀n.
P{s | fst (two_dice s) = n} =

if n = 2 ∨ n = 12 then 1
36

else if n = 3 ∨ n = 11 then 2
36

else if n = 4 ∨ n = 10 then 3
36

else if n = 5 ∨ n = 9 then 4
36

else if n = 6 ∨ n = 8 then 5
36

else if n = 7 then 6
36

else 0

12

12

9

10

12

10

8

4

6

4

23

4

3 2

2

35

5

5

6

6

8

8

7

7

7

9

9

11

11

11

10

Formal Verification of Probabilistic Programs – Joe Hurd – p.24/57

Example: Random Walk

• A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point 0.

n0 1 i−1 i i+1

HOME PUB
flips coin

heads tails

• Will the drunk always get home?

Formal Verification of Probabilistic Programs – Joe Hurd – p.25/57

Example: Random Walk

• Perhaps surprisingly, the drunk does always get home.
• We formalize the proof of this in HOL.
• Thus the formalized random walk satisfies

probabilistic termination.

• This allows us to derive a natural definition of walk:

` ∀n, k.
walk n k =

if n = 0 then unit k else

coin_flip (walk (n+1) (k+1)) (walk (n−1) (k+1))

• And prove some neat properties:

` ∀n, k. ∀∗s. even (fst (walk n k s)) = even (n+ k)

Formal Verification of Probabilistic Programs – Joe Hurd – p.26/57

Example: Random Walk

• Can extract walk to ML and simulate it.

• Use high-quality random bits from /dev/random.

• A typical sequence of results from random walks
starting at level 1:

57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, . . .

• Record breakers:
• 34th simulation yields a walk with 2645 steps
• 135th simulation yields a walk with 603787 steps
• 664th simulation yields a walk with 1605511 steps

• Expected number of steps to get home is infinite!

Formal Verification of Probabilistic Programs – Joe Hurd – p.27/57

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

` ∀n, t, s. prime n ⇒ fst (miller n t s) = >
` ∀n, t. ¬prime n ⇒ 1− 2−t ≤ P {s | fst (miller n t s) = ⊥}

Here n is the number to test for primality, and t is the
maximum number of iterations allowed.

Formal Verification of Probabilistic Programs – Joe Hurd – p.28/57

Example: Miller-Rabin Primality Test

• Can define a pseudo-random number generator in
HOL, and interpret miller in the logic to prove numbers
composite:

` ¬prime(226

+ 1) ∧ ¬prime(227

+ 1) ∧ ¬prime(228

+ 1)

• Or can manually extract miller to ML, and execute it
using /dev/random and calls to GMP:

bits El,n MR Gen time MR1 time

500 99424 99458 0.0443 0.2498

1000 99712 99716 0.0881 0.7284

2000 99856 99852 0.3999 4.2910

Formal Verification of Probabilistic Programs – Joe Hurd – p.29/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.30/57

Introduction: pGCL

• pGCL stands for probabilistic Guarded Command
Language.

• It’s Dijkstra’s GCL extended with probabilistic choice

c1 p⊕ c2

• Like GCL, the semantics is based on weakest
preconditions.

• Important: retains demonic choice

c1 u c2

• Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994–

Formal Verification of Probabilistic Programs – Joe Hurd – p.31/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL

• Formalizing Probabilistic
Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.32/57

pGCL Semantics

• Given a standard program C and a postcondition Q, let
P be the weakest precondition that satisfies

[P]C[Q]

• Precondition P is weaker than P ′ if P ′ ⇒ P .

• Such a P will always exist and be unique, so think of C
as a function that transforms postconditions into
weakest preconditions.

• pGCL generalizes this to probabilistic programs:
• Conditions α→ B become expectations α→ posreal.
• Expectation P is weaker than P ′ if P ′ v P .
• Think of programs as expectation transformers.

Formal Verification of Probabilistic Programs – Joe Hurd – p.33/57

pGCL Commands

Model pGCL commands with a HOL datatype:

command ≡ Assert of (state→ posreal)× command

| Abort

| Skip

| Assign of string × (state→ Z)

| Seq of command× command

| Demon of command× command

| Prob of (state→ posreal)× command× command

| While of (state→ B)× command

Note: the probability in Prob can depend on the state.

Formal Verification of Probabilistic Programs – Joe Hurd – p.34/57

Derived Commands
Define the following derived commands as syntactic sugar:

v := e ≡ Assign v e

c1 ; c2 ≡ Seq c1 c2

c1 u c2 ≡ Demon c1 c2

c1 p⊕ c2 ≡ Prob (λs. p) c1 c2

Cond b c1 c2 ≡ Prob (λs. if b s then 1 else 0) c1 c2

v := {e1, . . . , en} ≡ v := e1 u · · · u v := en

v := 〈e1, · · · , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉
p1 → c1 | · · · | pn → cn ≡{

Abort if none of the pi hold on the current state∏
i∈I ci where I = {i | 1 ≤ i ≤ n ∧ pi holds}

In addition, we write v := n+ 1 instead of “v” := λs. s “n” + 1.
Formal Verification of Probabilistic Programs – Joe Hurd – p.35/57

Weakest Preconditions
Define weakest preconditions (wp) directly on commands:

` (wp (Assert p c) = wp c)

∧ (wp Abort = λr. Zero)

∧ (wp Skip = λr. r)

∧ (wp (Assign v e) = λr, s. r (λw. if w = v then e s else s w))

∧ (wp (Seq c1 c2) = λr. wp c1 (wp c2 r))

∧ (wp (Demon c1 c2) = λr. Min (wp c1 r) (wp c2 r))

∧ (wp (Prob p c1 c2) =

λr, s. let x← [p s]≤1 in x(wp c1 r s) + (1− x)(wp c2 r s))

∧ (wp (While b c) =

λr. expect_lfp (λe, s. if b s then wp c e s else r s))

Formal Verification of Probabilistic Programs – Joe Hurd – p.36/57

Weakest Preconditions: Example

• The goal is to end up with variables i and j containing
the same value:

post ≡ if i = j then 1 else 0.

• First program:

pd ≡ i := 〈0, 1〉 ; j := {0, 1}
` wp pd post = Zero

• Second program:

dp ≡ j := {0, 1} ; i := 〈0, 1〉
` wp dp post = λs. 1/2.

Formal Verification of Probabilistic Programs – Joe Hurd – p.37/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition
Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.38/57

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

` (wlp (Assert p c) = wlp c)

∧ (wlp Abort = λr. Magic)

∧ (wlp Skip = λr. r)

∧ (wlp (Assign v e) = λr, s. r (λw. if w = v then e s else s w))

∧ (wlp (Seq c1 c2) = λr. wlp c1 (wlp c2 r))

∧ (wlp (Demon c1 c2) = λr. Min (wlp c1 r) (wlp c2 r))

∧ (wlp (Prob p c1 c2) =

λr, s. let x← [p s]≤1 in x(wlp c1 r s) + (1− x)(wlp c2 r s))

∧ (wlp (While b c) =

λr. expect_gfp (λe, s. if b s then wlp c e s else r s))

Formal Verification of Probabilistic Programs – Joe Hurd – p.39/57

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop ≡ While (λs. >) Skip

• For any postcondition post , we have

` wp loop post = Zero ∧ wlp loop post = Magic

• These correspond to the Hoare triples

[⊥] loop [post] {>} loop {post}

as we would expect from an infinite loop.

Formal Verification of Probabilistic Programs – Joe Hurd – p.40/57

Calculating wlp Lower Bounds

• Suppose we have a pGCL command c and a
postcondition q.

• We wish to derive a lower bound on the weakest liberal
precondition.

• Can think of this as the first-order query P v wlp c q.

• Idea: use a Prolog interpreter to solve for the variable P .

Formal Verification of Probabilistic Programs – Joe Hurd – p.41/57

Calculating wlp: Rules

Example Rules:

• Magic v wlp Abort Q

• Q v wlp Skip Q

• R v wlp C2 Q ∧ P v wlp C1 R ⇒
P v wlp (Seq C1 C2) Q

• P1 v wlp C1 Q ∧ P2 v wlp C2 Q ⇒
Min P1 P2 v wlp (Demon C1 C2) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.

Formal Verification of Probabilistic Programs – Joe Hurd – p.42/57

Calculating wlp: While Loops

• We use the following theorem about While loops:

` ∀P,Q, b, c.
P v If b (wlp c P) Q⇒ P v wlp (While b c) Q

• Cannot use in this form, because of the repeated
occurrence of P in the premise.

• Instead, provide a rule that requires an assertion:
• R v wlp C P ∧ P v If b R Q ⇒
P v wlp (Assert P (While b c)) Q

• The second premise generates a verification condition
as an extra subgoal.

• It is left to the user to provide a useful loop invariant in
the Assert around the while loop.

Formal Verification of Probabilistic Programs – Joe Hurd – p.43/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator

• Example Verifications
• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.44/57

Example: Monty Hall
contestant switch ≡
pc := {1, 2, 3} ;

cc := 〈1, 2, 3〉 ;

pc 6= 1 ∧ cc 6= 1 → ac := 1

| pc 6= 2 ∧ cc 6= 2 → ac := 2

| pc 6= 3 ∧ cc 6= 3 → ac := 3 ;

if ¬switch then Skip else

cc := (if cc 6= 1 ∧ ac 6= 1 then 1

else if cc 6= 2 ∧ ac 6= 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

win ≡ if cc = pc then 1 else 0.

Formal Verification of Probabilistic Programs – Joe Hurd – p.45/57

Example: Monty Hall

• Verification proceeds by:
1. Rewriting away all the syntactic sugar.
2. Expanding the definition of wp.
3. Carrying out the numerical calculations.

• After 22 seconds and 250536 primitive inferences in the
logical kernel:

` wp (contestant switch) win = λs. if switch then 2/3 else 1/3

• In other words, by switching the contestant is twice as
likely to win the prize.

• Not trivial to do by hand, because the intermediate
expectations get rather large.

Formal Verification of Probabilistic Programs – Joe Hurd – p.46/57

Example: Rabin Mutual Exclusion

• Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical
section of code.

• The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.

• Could implement the coin tossing using
n := 0 ; b := 0 ; While (b = 0) (n := n+ 1 ; b := 〈0, 1〉)

Formal Verification of Probabilistic Programs – Joe Hurd – p.47/57

Example: Rabin Mutual Exclusion

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

2. Initialize n with 1, the lowest number not yet considered.

3. If i = 1 then we have a unique winner: return SUCCESS.

4. If i = 0 then the election has failed: return FAILURE.

5. Reduce i by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

6. Increment n by 1, and jump to Step 3.

Formal Verification of Probabilistic Programs – Joe Hurd – p.48/57

Example: Rabin Mutual Exclusion

The following pGCL program implements this data
refinement:

rabin ≡ While (1 < i) (

n := i ;

While (0 < n)

(d := 〈0, 1〉 ; i := i− d ; n := n− 1)

)

The desired postcondition representing a unique winner of
the election is

post ≡ if i = 1 then 1 else 0

Formal Verification of Probabilistic Programs – Joe Hurd – p.49/57

Example: Rabin Mutual Exclusion

• The precondition that we aim to show is

pre ≡ if i = 1 then 1 else if 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always
succeed.”

• Surprising: The probability of success is independent of
the number of processors.

• We formally verify the following statement of partial
correctness:

pre v wlp rabin post

Formal Verification of Probabilistic Programs – Joe Hurd – p.50/57

Example: Rabin Mutual Exclusion

• Need to annotate the While loops with invariants.

• The invariant for the outer loop is simply pre.

• For the inner loop we used

if 0 ≤ n ≤ i then (2/3) ∗ invar1 i n+ invar2 i n else 0

where

invar1 i n ≡
1− (if i = n then (n+ 1)/2n else if i = n+ 1 then 1/2n else 0)

invar2 i n ≡ if i = n then n/2n else if i = n+ 1 then 1/2n else 0

• Coming up with these was the hardest part of the
verification.

Formal Verification of Probabilistic Programs – Joe Hurd – p.51/57

Example: Rabin Mutual Exclusion

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.

2. Prove wlp rabin = wlp annotated_rabin

3. Use this to reduce the goal to

pre v wlp annotated_rabin post

4. This is in the correct form to apply the VC generator.

5. Finish off the VCs with 58 lines of HOL-4 proof script.

|- Leq (\s. if s"i" = 1 then 1

else if 1 < s"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))

Formal Verification of Probabilistic Programs – Joe Hurd – p.52/57

Contents

• Introduction

• Approach 1: Monads
• Formalizing Probability
• Modelling Probabilistic Programs
• Example Verifications

• Approach 2: pGCL
• Formalizing Probabilistic Guarded Commands
• wlp Verification Condition Generator
• Example Verifications

• Conclusion

Formal Verification of Probabilistic Programs – Joe Hurd – p.53/57

Conclusion

Advantages of Monad Approach

• Grounded in measure theory.
• Probabilities more than real numbers.

• More suitable for verifying functional programs.
• Simple to lift verified HOL functions to ML.

• Can reason about the distinction between probabilistic
and guaranteed termination.
• Practical difference: operating systems typically

provide a source of random bits.

Formal Verification of Probabilistic Programs – Joe Hurd – p.54/57

Conclusion

Advantages of pGCL Approach

• Supports the demonic choice programming construct.
• Can be used to verify distributed algorithms.

• Verification easier to carry out than monad approach.
• Modelling programs with expectation transformers is

a useful abstraction.

• Deep embedding: can quantify over all programs.
• May be useful for modelling a ‘spy’ in a security

protocol verification.

Future Work: combine these approaches to get the best of
both worlds.

Formal Verification of Probabilistic Programs – Joe Hurd – p.55/57

Related Work

• Formal methods for probabilistic programs:
• Hurd’s thesis, 2002.
• Probabilistic invariants for probabilistic machines,

Hoang et. al., 2003.
• Christine Paulin’s work in Coq, 2002.
• Prism model checker, Kwiatkowska et. al., 2000–

• Mechanized program semantics:
• Formalizing Dijkstra, Harrison, 1998.
• Hoare Logics in Isabelle/HOL, Nipkow, 2001.
• Mechanizing program logics in higher order logic,

Gordon, 1989.
• A mechanically verified verification condition

generator, Homeier and Martin, 1995.
Formal Verification of Probabilistic Programs – Joe Hurd – p.56/57

Related Work

• Semantics of Probabilistic Programs:
• Semantics of Probabilistic Programs, Kozen, 1979.
• Termination of Probabilistic Concurrent Processes,

Hart, Sharir and Pnueli, 1983.
• Probabilistic Non-Determinism, Jones, 1990.
• Probabilistic predicate transformers, Morgan, McIver,

Seidel and Sanders, 1994–
• Notes on the Random Walk: an Example of

Probabilistic Temporal Reasoning, 1996
• Proof Rules for Probabilistic Loops, Morgan, 1996

Formal Verification of Probabilistic Programs – Joe Hurd – p.57/57

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	The HOL Theorem Prover
	Contents
	Introduction: Monads
	Contents
	Formalizing Probability
	Formalizing Probability
	Contents
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Probabilistic Termination
	Probabilistic Termination
	Contents
	Example: The $Uniform {3}$ Distribution
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Miller-Rabin Primality Test
	Example: Miller-Rabin Primality Test
	Contents
	Introduction: pGCL
	Contents
	pGCL Semantics
	pGCL Commands
	Derived Commands
	Weakest Preconditions
	Weakest Preconditions: Example
	Contents
	Weakest Liberal Preconditions
	Weakest Liberal Preconditions: Example
	Calculating $Wlp $ Lower Bounds
	Calculating $Wlp $: Rules
	Calculating $Wlp $: While Loops
	Contents
	Example: Monty Hall
	Example: Monty Hall
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Contents
	Conclusion
	Conclusion
	Related Work
	Related Work

