Formal Verification of Probabilistic Programs: Two Approaches

Joe Hurd joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)

Contents

• **Introduction**

- Approach 1: Monads
	- **Formalizing Probability**
	- Modelling Probabilistic Programs
	- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- •Example Verifications
- Conclusion

Probabilistic programs are useful for many applications:

- Symmetry breaking
	- Rabin's mutual exclusion algorithm
- Eliminating pathological cases
	- Miller-Rabin primality test
- Algorithm complexity
	- Sorting nuts and bolts
- Defeating a powerful adversary
	- Mixed strategies in game theory
- Solving ^a problem in an extremely simple way
	- **Finding minimal cuts**

• Quicksort Algorithm (Hoare, 1962):

```
fun quicksort elements =
 if length elements <= 1 then elements
elseletval pivot         = choose_pivot elements
     val (left, right) = partition pivot elements
  inquicksort left @ [pivot] @ quicksort right
  end;
```
• Usually $O(n\log n)$ comparisons, unless choice of pivot interacts badly with data.

• Example of bad behaviour when pivot is first element:

input: [5, 4, 3, 2, 1] pivot 5: [4, 3, 2, 1]--5--[] pivot 4: $[3, 2, 1]^{--4--}[$ pivot 3: [2, 1]--3--[] pivot 2: [1]--2--[] output: [1, 2, 3, 4, 5]

- Lists in reverse order take $O(n^2)$ comparisons.
- So do lists that are in the right order!

- Solution: Introduce randomization into the algorithm itself.
- Pick pivots uniformly at random from the list of elements.
- Every list has exactly the same performance profile:
	- •Expected number of comparisons is $O(n \log n)$.
	- Small class $C \subset S_n$ of lists with guaranteed bad performance has been replaced with ^a small probability $|C|/n!$ of bad performance on any input.

• Broken procedure for choosing ^a pivot:

```
fun choose_pivot elements =
 if length elements = 1 orelse coin_flip ()
then hd elements
 else choose_pivot (tl elements);
```
- Not a uniform distribution when length of elements > 2 .
- Actually reinstates a bad class of input lists taking $O(n^2)$ (expected) comparisons.
- Would like to verify probabilistic programs in ^a theorem prover.

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has ^a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with ^a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.

Contents

•Introduction

\bullet **Approach 1: Monads**

- **Formalizing Probability**
- Modelling Probabilistic Programs
- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- Example Verifications
- Conclusion

Introduction: Monads

To verify ^a probabilistic program in HOL:

• Must be able to formalize its probabilistic specification;

 $\mathcal{E}: \mathcal{P}(\mathcal{P}(\mathbb{B}^{\infty})), \quad \mathbb{P}: \mathcal{E} \rightarrow \mathbb{R}$

• and model the probabilistic program in the logic;

prob_program : $\mathbb{N} \to \mathbb{B}^{\infty} \to \{\text{success}, \text{failure}\} \times \mathbb{B}^{\infty}$

• then finally prove that the program satisfies its specification.

 $\vdash \forall \, n.$ $\mathbb{P} \left\{ s \mid \mathsf{fst} \; (\mathsf{prob_program} \; n \; s) = \mathsf{failure} \right\} \leq 2^{-n}$

Contents

•Introduction

• Approach 1: Monads

•**Formalizing Probability**

- Modelling Probabilistic Programs
- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- Example Verifications
- Conclusion

Formalizing Probability

 \bullet • Need to construct a probability space of Bernoulli $(\frac{1}{2})$ sequences, to give meaning to specifications like

 $\mathbb{P}\left\{s \mid \mathsf{fst}\;(\mathsf{prob_program}\;n\;s)=\mathsf{failure}\right\}$

- To ensure soundness, would like it to be ^a purely definitional extension of HOL (no axioms).
- Use measure theory, and end up with a set $\mathcal E$ of events and a probability function \mathbb{P} :

 $\mathcal{E} = \{S \subset \mathbb{B}^\infty \mid S \text{ is a measurable set}\}$ $\mathbb{P}(S)$ = the probability measure of S (for $S \in \mathcal{E}$)

Formalizing Probability

- Formalized some general measure theory in HOL, including Carathéodory's extension theorem.
- Next defined the measure of prefix sets (or cylinders):

$$
\forall l. \ \mu \{s_0s_1s_2\cdots \mid [s_0,\ldots,s_{n-1}]=l\}=2^{-(\text{length } l)}
$$

- Finally extended this measure to a σ -algebra:
	- $\mathcal{E} \;\; = \;\; \sigma(\mathsf{prefix} \; \mathsf{sets})$
		- \mathbb{P} = Carathéodory extension of μ to $\mathcal E$
- Similar to the definition of Lebesgue measure.

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability

• **Modelling Probabilistic Programs**

- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- •Example Verifications
- •**Conclusion**

Modelling Probabilistic Programs

•Given ^a probabilistic 'function':

$$
\hat{f}:\alpha\to\beta
$$

• Model \hat{f} f with a higher-order logic function

$$
f: \alpha \to \mathbb{B}^{\infty} \to \beta \times \mathbb{B}^{\infty}
$$

that passes around 'an infinite sequence of coin-flips.'

• The probability that \hat{f} $f(a)$ meets a specification $B:\beta\rightarrow\mathbb{B}$ can then be formally defined as

 $\mathbb{P}\left\{s\mid B(\mathsf{fst}\; (f\; a\; s))\right\}$

Modelling Probabilistic Programs

• Can use state-transformer monadic notation to express HOL models of probabilistic programs:

> unit $a\;\;=\;\; \lambda\, s.\; (a,s)$ bind $f \; g \;\; = \;\; \lambda \, s.$ let $(x,s') \leftarrow f(s)$ in $g \; x \; s'$ $\mathsf{coin_flip}~f~g~=~\lambda\,s.~(\text{if shd}~s~\text{then}~f~\text{else}~g,~\text{stl}~s)$

• For example, if dice is ^a program that generates ^a dice throw from ^a sequence of coin flips, then

two_dice $=$ bind dice $(\lambda\,x.$ bind dice $(\lambda\,y.$ unit $(x+y)))$

generates the sum of two dice.

Example: The Binomial $(n, \frac{1}{2})$ **Distribution**

- \bullet • Definition of a sampling algorithm for the Binomial $(n, \frac{1}{2})$ distribution:
	- $\vdash\;$ bit $=$ coin_flip (unit $1)$ (unit $0)$

$$
\vdash \text{ binomial } 0 = \text{unit } 0 \ \wedge
$$

 $\forall\,n.$

binomial (suc $n)=\,$ bind bit $(\lambda\,x.$ bind (binomial $n)$ $(\lambda\,y.$ unit $(x+y)))$

•Correctness theorem:

$$
\vdash \forall n, r. \; \mathbb{P}\left\{s \mid \text{fst (binomial } n \; s) = r\right\} = \binom{n}{r} \left(\frac{1}{2}\right)^n
$$

Probabilistic Termination

- \bullet • The Binomial $(n, \frac{1}{2})$ sampling algorithm is guaranteed to terminate within n coin-flips.
- The following algorithm generates dice throws from coin-flips (Knuth and Yao, 1976):

- The backward loops introduce the possibility of looping forever.
- But the probability of this happening is 0.
- Probabilistic termination: the program terminates with probability 1.

Probabilistic Termination

- Probabilistic termination is more expressive than guaranteed termination.
- No coin-flip algorithm that is guaranteed to terminate can sample from the following distributions:
	- Uniform (3) : choosing one of $0, 1, 2$ each with probability $\frac{1}{3}.$
	- •• Geometric $(\frac{1}{2})$: choosing $n\in \mathbb{N}$ with probability $(\frac{1}{2})^{n+1}.$ The index of the first head in ^a sequence of coin-flips.
- We model probabilistic termination in HOL using ^a probabilistic while loop:

$$
\vdash \forall c, b, a.
$$

while c b $a=$ if $\displaystyle c(a)$ then bind $\displaystyle (b\ a)$ $\displaystyle ($ while c $b)$ else unit a

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs

•**Example Verifications**

- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- Example Verifications
- Conclusion

Example: The Uniform(3) **Distribution**

• First make a raw definition of unif3:

 \vdash unif $3 =$ while $(\lambda\, n.\ n=3)$ (coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

- Next prove unif3 satisfies probabilistic termination.
- This allows us to derive a recursive definition of unif3:

 \vdash \vdash $\;$ unif3 $=$ coin_flip (coin_flip (unit $0)$ (unit $1))$ (coin_flip (unit $2)$ unif3)

 \bullet • The correctness theorem also follows:

 $\ \vdash \quad \forall \, n. \; \mathbb{P} \left\{ s \mid \mathsf{fst} \; (\mathsf{unif3} \; s) = n \right\} = \mathsf{if} \; n < 3 \; \mathsf{then} \; \tfrac{1}{3} \; \mathsf{else} \; 0$

Example: Optimal Dice

A probabilistic finite state automaton:

dice $\,=\,$ coin_flip $(prob$ -repeat (coin flip $(coin-flip)$ (unit none) $(unit (some 1)))$ (mmap some $(coin-flip)$ $(unit 2)$ $(\text{unit } 3))))$ (prob_repeat $(coin-flip)$ (mmap some (coin_flip $(unit 4)$ $(unit 5)))$ (coin_flip (unit (some 6)) $(unit none))))$

Example: Optimal Dice

•Correctness theorem:

 $\;\vdash\; \;\forall\, n.\; \mathbb{P}\left\{s \mid \textsf{fst }(\textsf{dice } s)=n\right\} = \textsf{if } 1 \leq n \wedge n \leq 6 \textsf{ then } \tfrac{1}{6} \textsf{ else } 0$

- \bullet • The dice program takes $3\frac{2}{3}$ coin flips (on average) to output ^a dice throw.
- Knuth and Yao (1976) show this to be optimal.
- To generate the sum of two dice throws, is it possible to do better than $7\frac{1}{3}$ coin flips?

Example: Optimal Dice

On average, this program takes $4\frac{7}{18}$ coin flips to produce ^a result, and this is also optimal.

 $\vdash\quad\forall\, n.$ $\mathbb{P}\{s \mid \textsf{fst (two_dice } s) = n\} =$ if $n=2 \vee n=12$ then $\frac{1}{36}$ else if $n=3\vee n=11$ then $\frac{2}{36}$ else if $n=4\vee n=10$ then $\frac{3}{36}$ else if $n=5\vee n=9$ then $\frac{4}{36}$ else if $n=6 \vee n=8$ then $\frac{5}{36}$ else if $n=7$ then $\frac{6}{36}$ else 0

Example: Random Walk

• A drunk exits a pub at point n , and lurches left and right with equal probability until he hits home at point 0.

• Will the drunk always get home?

Example: Random Walk

- Perhaps surprisingly, the drunk does always get home.
	- We formalize the proof of this in HOL.
	- Thus the formalized random walk satisfies probabilistic termination.
- This allows us to derive a natural definition of walk:

 $\vdash\ \ \forall\, n,k.$ walk n $k = \,$ if $n=0$ then unit k else $\mathsf{coin_flip}\ (\mathsf{walk}\ (n{+}1)\ (k{+}1))\ (\mathsf{walk}\ (n{-}1)\ (k{+}1))$

• And prove some neat properties:

 $\;\vdash\; \; \forall\, n,k.\; \forall^*s.$ even $(\mathsf{fst}\;(\mathsf{walk}\; n\; k\; s)) = \mathsf{even}\; (n+k)$

Example: Random Walk

- Can extract walk to ML and simulate it.
	- Use high-quality random bits from /dev/random.
- A typical sequence of results from random walks starting at level 1:

 $57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, \ldots$

- • Record breakers:
	- 34th simulation yields a walk with 2645 steps
	- \bullet 135th simulation yields ^a walk with 603787 steps
	- 664th simulation yields ^a walk with 1605511 steps
- •Expected number of steps to get home is infinite!

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test, used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

$$
\vdash \forall n, t, s. \text{ prime } n \implies \text{fst } (\text{miller } n \text{ } t \text{ } s) = \top
$$

$$
\vdash \ \ \forall \, n, t. \ \ \neg \textsf{prime} \; n \ \Rightarrow 1 - 2^{-t} \leq \mathbb{P} \left\{ s \mid \textsf{fst} \; (\textsf{miller} \; n \; t \; s) = \bot \right\}
$$

Here n is the number to test for primality, and t is the maximum number of iterations allowed.

Example: Miller-Rabin Primality Test

• Can define ^a pseudo-random number generator in HOL, and interpret miller in the logic to prove numbers composite:

$$
\vdash \neg \mathsf{prime}(2^{2^6}+1) \;\land\; \neg \mathsf{prime}(2^{2^7}+1) \;\land\; \neg \mathsf{prime}(2^{2^8}+1)
$$

• Or can manually extract miller to ML, and execute it using /dev/random and calls to GMP:

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs
	- Example Verifications

•**Approach 2: pGCL**

- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- Conclusion

Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It's Dijkstra's GCL extended with probabilistic choice

c_1 $_p\oplus$ c_2

- Like GCL, the semantics is based on weakest preconditions.
- Important: retains demonic choice

c_1 n c_2

• Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs
	- Example Verifications
- Approach 2: pGCL

• **Formalizing Probabilistic Guarded Commands**

- wlp Verification Condition Generator
- Example Verifications
- Conclusion

pGCL Semantics

 $\bullet\,$ Given a standard program C and a postcondition $Q,$ let P be the weakest precondition that satisfies

$[P]C[Q]$

- Precondition P is weaker than P' if $P' \Rightarrow P$.
- Such a P will always exist and be unique, so think of C as ^a function that transforms postconditions into weakest preconditions.
- pGCL generalizes this to probabilistic programs:
	- Conditions $\alpha \to \mathbb{B}$ become expectations $\alpha \to$ posreal.
	- Expectation P is weaker than P' if $P' \sqsubseteq P$.
	- Think of programs as expectation transformers.

pGCL Commands

Model pGCL commands with ^a HOL datatype:

command $\mathtt{d} \quad \equiv \quad$ Assert of (state \rightarrow posreal) \times command | Abort | Skip Assign of string \times (state $\rightarrow \mathbb{Z}$) Seq of command \times command Demon of command \times command Prob of (state \rightarrow posreal) \times command \times command While of (state $\rightarrow \mathbb{B}$) \times command

Note: the probability in Prob can depend on the state.

Derived Commands

Define the following *derived commands* as syntactic sugar:

 $v := e$ \equiv Assign v e c_1 ; c_2 \equiv Seq c_1 c_2 c_1 \sqcap c_2 \equiv $\,$ Demon c_1 c_2 c_1 $_p\oplus$ c_2 $\quad \equiv \quad$ Prob $(\lambda s.\ p)\ c_1\ c_2$ $\mathsf{Cond}\;b\;c_1\;c_2\;\;\;\equiv\;\;\;\mathsf{Prob}\;(\lambda s.\; \mathsf{if}\; b\; s\;\mathsf{then}\;1\;\mathsf{else}\;0)\;c_1\;c_2$ $v:=\{e_1,\ldots,e_n\} \quad \equiv \quad v:=e_1\ \sqcap \ \cdots \ \sqcap \ v:=e_n$ $v := \langle e_1, \cdots, e_n \rangle \quad \equiv \quad v := e_{1} \; \mathbb{1}_{/n} \oplus \; v := \langle e_2, \ldots, e_n \rangle$ $p_1 \rightarrow c_1 \mid \cdots \mid p_n \rightarrow c_n \equiv$ (Abort if none of the p_i hold on the current state $\left\{ \begin{array}{ll} \prod_{i\in I} c_i & \text{where } I = \{i \mid 1 \leq i \leq n \wedge p_i \text{ holds} \} \end{array} \right.$

In addition, we write $v := n+1$ instead of " $v" := \lambda s. \ s$ " $n" + 1.$

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

 $\vdash\;\;$ (wp $({\sf Assert}\; p\; c) =$ wp $c)$ \wedge (wp Abort = λr . Zero) \wedge (wp Skip = $\lambda r.\; r)$ \wedge (wp (Assign v $e) = \lambda r, s.$ r ($\lambda w.$ if $w = v$ then e s else s $w))$ \wedge (wp (Seq c_1 c_2) = λr . wp c_1 (wp c_2 r)) \wedge (wp (Demon c_1 c_2) = λr . Min (wp c_1 r) (wp c_2 r)) \wedge (wp (Prob $p~c_1~c_2) =$ λr , s. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\text{wp } c_1 \ r \ s) + (1-x)(\text{wp } c_2 \ r \ s))$ \wedge (wp (While b c) $=$ λr . expect_lfp $(\lambda e, s.$ if $b \ s$ then wp $c \ e \ s$ else $r \ s))$

Weakest Preconditions: Example

• The goal is to end up with variables i and j containing the same value:

$$
post \equiv \text{if } i = j \text{ then } 1 \text{ else } 0.
$$

• First program:

$$
\mathsf{pd} \equiv i := \langle 0, 1 \rangle \; ; \; j := \{0, 1\}
$$
\n
$$
\vdash \mathsf{wp} \; \mathsf{pd} \; \mathsf{post} = \mathsf{Zero}
$$

• Second program:

$$
\mathsf{dp} \equiv j := \{0, 1\} ; i := \langle 0, 1 \rangle
$$

$$
\vdash \mathsf{wp} \; \mathsf{dpp} \; \mathsf{post} = \lambda s. \; 1/2.
$$

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs
	- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands

• wlp **Verification Condition Generator**

- Example Verifications
- Conclusion

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

 $\vdash\;$ (wlp (Assert p $c)$ $=$ wlp $c)$ \wedge (wlp Abort = λr . Magic) \wedge (wlp Skip = $\lambda r.\; r)$ \land (wlp $(\mathsf{Assign}\; v\; e) = \lambda r, s.\; r\; (\lambda w.\; \mathsf{if}\; w = v\; \mathsf{then}\; e\; s\; \mathsf{else}\; s\; w))$ \wedge (wlp (Seq c_1 c_2) = λr . wlp c_1 (wlp c_2 r)) \wedge (wlp (Demon c_1 c_2) = λr . Min (wlp c_1 r) (wlp c_2 r)) \wedge (wlp (Prob $p~c_1~c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\text{wlp } c_1 \ r \ s) + (1-x)(\text{wlp } c_2 \ r \ s))$ \wedge (wlp (While b $c)$ $=$

 λr . expect_gfp $(\lambda e, s.$ if $b~s$ then wlp $c~e~s$ else $r~s))$

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the simplest infinite loop:

```
loop \equiv While (\lambda s. \top) Skip
```
• For any postcondition *post*, we have

 $\vdash \,$ wp loop ${post} =$ Zero $\,\wedge\,$ wlp loop ${post} =$ Magic

• These correspond to the Hoare triples

 \Box loop $\textcolor{blue}{|pos|}\qquad \{\top\}$ loop $\{\textcolor{blue}{post}\}$

as we would expect from an infinite loop.

Calculating wlp **Lower Bounds**

- Suppose we have a pGCL command c and a postcondition q .
- We wish to derive a lower bound on the weakest liberal precondition.
- Can think of this as the first-order query $P \sqsubseteq$ wlp c q .
- \bullet Idea: use a Prolog interpreter to solve for the variable P .

Calculating wlp**: Rules**

Example Rules:

- $\bullet~$ Magic \sqsubseteq wlp Abort Q
- $\bullet \ \ Q \sqsubseteq$ wlp Skip Q
- \bullet $R \sqsubseteq$ wlp C_2 $Q \;\wedge\; P \sqsubseteq$ wlp C_1 $R \; \Rightarrow$ $P \sqsubseteq$ wlp (Seq C_1 C_2) Q
- \bullet $\;P_1 \sqsubseteq$ wlp $C_1 \;Q \;\wedge\; P_2 \sqsubseteq$ wlp $C_2 \;Q \;\Rightarrow\;$ Min P_1 P_2 \sqsubseteq wlp (Demon C_1 C_2) Q

Note: the Prolog interpreter automatically calculates the 'middle condition' in ^a Seq command.

Calculating wlp**: While Loops**

• We use the following theorem about While loops:

 $\vdash \forall P, Q, b, c.$ $P \sqsubseteq$ If b (wlp c $P)$ $Q \Rightarrow$ $P \sqsubseteq$ wlp (While b $c)$ Q

- Cannot use in this form, because of the repeated occurrence of P in the premise.
- Instead, provide ^a rule that requires an assertion:
	- $\bullet\;R\sqsubseteq$ wlp $C\;P\;\wedge\;P\sqsubseteq$ If $b\;R\;Q\;\Rightarrow\;$ $P \sqsubseteq$ wlp (Assert P (While b c)) Q
- The second premise generates a verification condition as an extra subgoal.
- It is left to the user to provide a useful loop invariant in the Assert around the while loop.

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs
	- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator

•**Example Verifications**

• Conclusion

Example: Monty Hall

contestant $\textit{switch} \, \equiv$ $pc := \{1, 2, 3\}$; $cc := \langle 1, 2, 3\rangle$; $pc \neq 1 \wedge cc \neq 1 \rightarrow ac := 1$ $pc \neq 2 \wedge cc \neq 2 \rightarrow ac := 2$ $pc \neq 3 \wedge cc \neq 3 \rightarrow ac := 3 ;$ if ¬*switch* then Skip else $cc := (\mathsf{if}\; cc \neq 1 \land ac \neq 1$ then 1 else if $cc\neq 2 \wedge ac \neq 2$ then 2 else $3)$

The postcondition is simply the desired goal of the contestant, i.e.,

win
$$
\equiv
$$
 if $cc = pc$ then 1 else 0.

Example: Monty Hall

- Verification proceeds by:
	- 1. Rewriting away all the syntactic sugar.
	- 2. Expanding the definition of wp.
	- 3. Carrying out the numerical calculations.
- After 22 seconds and 250536 primitive inferences in the logical kernel:
	- $\vdash \,$ wp (contestant $\,$ swit $\,$ c $\,$ h $\,)$ win $= \lambda s.$ if $\,$ swit $\,$ c $\,$ h $\,$ then $2/3$ else $1/3$
- In other words, by switching the contestant is twice as likely to win the prize.
- Not trivial to do by hand, because the intermediate expectations get rather large.

- Suppose N processors are executing concurrently, and from time to time some of them need to enter a critical section of code.
- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing ^a leader who is permitted to enter the critical section:
	- 1. Each of the waiting processors repeatedly tosses ^a fair coin until a head is shown
	- 2. The processor that required the largest number of tosses wins the election.
	- 3. If there is ^a tie, then have another election.
- Could implement the coin tossing using $n := 0 \; ; \; b := 0 \; ; \; \mathsf{While} \; (b = 0) \; (n := n+1 \; ; \; b := \langle 0, 1 \rangle)$

For our verification, we do not model i processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

- 1. Initialize i with the number of processors waiting to enter the critical section who have just picked ^a number.
- 2. Initialize n with 1, the lowest number not yet considered.
- 3. If $i = 1$ then we have a unique winner: return Success.
- 4. If $i=0$ then the election has failed: return FAILURE.
- 5. Reduce i by eliminating all the processors who picked the lowest number n (since certainly none of them won the election).
- 6. Increment n by 1, and jump to Step 3.

The following pGCL program implements this data refinement:

> rabin \equiv While $(1 < i)$ ($n := i \; ;$ While $(0 < n)$ $(d := \langle 0, 1 \rangle ; i := i - d ; n := n - 1)$)

The desired postcondition representing ^a unique winner of the election is

$$
post \equiv \text{ if } i = 1 \text{ then } 1 \text{ else } 0
$$

•The precondition that we aim to show is

```
\mathsf{pre} \equiv \mathsf{if} \, i = 1 then 1 else if 1 < i then 2/3 else 0
```
"For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce ^a unique winner is ²/³, except for the trivial case of one processor when it will always succeed."

- Surprising: The probability of success is independent of the number of processors.
- We formally verify the following statement of partial correctness:

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ rabin post

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply pre.
- For the inner loop we used

if $0\leq n\leq i$ then $(2/3)*$ invar 1 i $n+$ invar 2 i n else 0

where

invar 1 i n \equiv $1 -$ (if $i = n$ then $(n + 1)/2^n$ else if $i = n + 1$ then $1/2^n$ else $0)$ invar2 i $n~\equiv~$ if $i = n$ then $n/2^n$ else if $i = n+1$ then $1/2^n$ else 0

• Coming up with these was the hardest part of the verification.

The verification proceeded as follows:

- 1. Create the annotated program annotated_rabin.
- 2. Prove wlp rabin $=$ wlp annotated_rabin
- 3. Use this to reduce the goal to

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ annotated rabin post

4. This is in the correct form to apply the VC generator. 5. Finish off the VCs with 58 lines of HOL-4 proof script.

$$
|- \text{ Leg } (\& \text{ if } s" \text{ i" = 1 then 1}
$$
\n
$$
= \text{ else if } 1 < s" \text{ i" then } 2/3 \text{ else 0}
$$
\n
$$
(\text{wlp } \text{rabin } (\& \text{ if } s" \text{ i" = 1 then 1 else 0)})
$$

Contents

- •Introduction
- Approach 1: Monads
	- Formalizing Probability
	- Modelling Probabilistic Programs
	- Example Verifications
- Approach 2: pGCL
	- Formalizing Probabilistic Guarded Commands
	- wlp Verification Condition Generator
	- Example Verifications

• **Conclusion**

Conclusion

Advantages of Monad Approach

- Grounded in measure theory.
	- Probabilities more than real numbers.
- More suitable for verifying functional programs.
	- Simple to lift verified HOL functions to ML.
- Can reason about the distinction between probabilistic and guaranteed termination.
	- Practical difference: operating systems typically provide ^a source of random bits.

Conclusion

Advantages of pGCL Approach

- Supports the demonic choice programming construct.
	- Can be used to verify distributed algorithms.
- Verification easier to carry out than monad approach.
	- Modelling programs with expectation transformers is a useful abstraction.
- Deep embedding: can quantify over all programs.
	- May be useful for modelling a 'spy' in a security protocol verification.

Future Work: combine these approaches to get the best of both worlds.

Related Work

- Formal methods for probabilistic programs:
	- Hurd's thesis, 2002.
	- Probabilistic invariants for probabilistic machines, Hoang et. al., 2003.
	- Christine Paulin's work in Coq, 2002.
	- Prism model checker, Kwiatkowska et. al., 2000–
- Mechanized program semantics:
	- Formalizing Dijkstra, Harrison, 1998.
	- Hoare Logics in Isabelle/HOL, Nipkow, 2001.
	- Mechanizing program logics in higher order logic, Gordon, 1989.
	- A mechanically verified verification condition generator, Homeier and Martin, 1995.

Related Work

- Semantics of Probabilistic Programs:
	- Semantics of Probabilistic Programs, Kozen, 1979.
	- Termination of Probabilistic Concurrent Processes, Hart, Sharir and Pnueli, 1983.
	- Probabilistic Non-Determinism, Jones, 1990.
	- Probabilistic predicate transformers, Morgan, McIver, Seidel and Sanders, 1994–
		- Notes on the Random Walk: an Example of Probabilistic Temporal Reasoning, 1996
		- Proof Rules for Probabilistic Loops, Morgan, 1996