Formal Verification of Probabilistic Programs: Two Approaches

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)

Contents

Introduction

- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications
- Conclusion

Probabilistic programs are useful for many applications:

- Symmetry breaking
 - Rabin's mutual exclusion algorithm
- Eliminating pathological cases
 - Miller-Rabin primality test
- Algorithm complexity
 - Sorting nuts and bolts
- Defeating a powerful adversary
 - Mixed strategies in game theory
- Solving a problem in an extremely simple way
 - Finding minimal cuts

• Quicksort Algorithm (Hoare, 1962):

```
fun quicksort elements =
  if length elements <= 1 then elements
  else
    let
      val pivot = choose_pivot elements
      val (left, right) = partition pivot elements
    in
      quicksort left @ [pivot] @ quicksort right
    end;</pre>
```

• Usually $O(n \log n)$ comparisons, unless choice of pivot interacts badly with data.

• Example of bad behaviour when pivot is first element:

input: [5, 4, 3, 2, 1]
pivot 5: [4, 3, 2, 1]--5--[]
pivot 4: [3, 2, 1]--4--[]
pivot 3: [2, 1]--3--[]
pivot 2: [1]--2--[]
output: [1, 2, 3, 4, 5]

- Lists in reverse order take $O(n^2)$ comparisons.
- So do lists that are in the right order!

- Solution: Introduce randomization into the algorithm itself.
- Pick pivots uniformly at random from the list of elements.
- Every list has exactly the same performance profile:
 - Expected number of comparisons is $O(n \log n)$.
 - Small class C ⊂ S_n of lists with guaranteed bad performance has been replaced with a small probability |C|/n! of bad performance on any input.

• Broken procedure for choosing a pivot:

```
fun choose_pivot elements =
  if length elements = 1 orelse coin_flip ()
  then hd elements
  else choose_pivot (tl elements);
```

- Not a uniform distribution when length of elements > 2.
- Actually reinstates a bad class of input lists taking $O(n^2)$ (expected) comparisons.
- Would like to verify probabilistic programs in a theorem prover.

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.

Contents

Introduction

Approach 1: Monads

- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications
- Conclusion

Introduction: Monads

To verify a probabilistic program in HOL:

• Must be able to formalize its probabilistic specification;

 $\mathcal{E}: \mathcal{P}(\mathcal{P}(\mathbb{B}^{\infty})), \quad \mathbb{P}: \mathcal{E} \to \mathbb{R}$

• and model the probabilistic program in the logic;

prob_program : $\mathbb{N} \to \mathbb{B}^{\infty} \to \{$ success, failure $\} \times \mathbb{B}^{\infty}$

then finally prove that the program satisfies its specification.

 $\vdash \forall n. \mathbb{P} \{ s \mid \mathsf{fst} (\mathsf{prob_program} \ n \ s) = \mathsf{failure} \} \le 2^{-n}$

Contents

Introduction

• Approach 1: Monads

Formalizing Probability

- Modelling Probabilistic Programs
- Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications
- Conclusion

Formalizing Probability

• Need to construct a probability space of Bernoulli $(\frac{1}{2})$ sequences, to give meaning to specifications like

 $\mathbb{P}\left\{s \mid \mathsf{fst}\;(\mathsf{prob_program}\;n\;s) = \mathsf{failure}\right\}$

- To ensure soundness, would like it to be a purely definitional extension of HOL (no axioms).
- Use measure theory, and end up with a set *E* of events and a probability function P:

 $\mathcal{E} = \{S \subset \mathbb{B}^{\infty} \mid S \text{ is a measurable set} \}$ $\mathbb{P}(S) = \text{the probability measure of } S \text{ (for } S \in \mathcal{E}\text{)}$

Formalizing Probability

- Formalized some general measure theory in HOL, including Carathéodory's extension theorem.
- Next defined the measure of prefix sets (or cylinders):

$$\forall l. \ \mu \{s_0 s_1 s_2 \cdots \mid [s_0, \dots, s_{n-1}] = l\} = 2^{-(\text{length } l)}$$

- Finally extended this measure to a σ -algebra:
 - $\mathcal{E} = \sigma(\text{prefix sets})$
 - \mathbb{P} = Carathéodory extension of μ to \mathcal{E}
- Similar to the definition of Lebesgue measure.

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications
- Conclusion

Modelling Probabilistic Programs

• Given a probabilistic 'function':

$$\widehat{f}:\alpha \to \beta$$

• Model \hat{f} with a higher-order logic function

$$f: \alpha \to \mathbb{B}^{\infty} \to \beta \times \mathbb{B}^{\infty}$$

that passes around 'an infinite sequence of coin-flips.'

• The probability that $\hat{f}(a)$ meets a specification $B: \beta \to \mathbb{B}$ can then be formally defined as

 $\mathbb{P}\left\{s \mid B(\mathsf{fst}\ (f\ a\ s))\right\}$

Modelling Probabilistic Programs

 Can use state-transformer monadic notation to express HOL models of probabilistic programs:

unit
$$a = \lambda s. (a, s)$$

bind $f g = \lambda s.$ let $(x, s') \leftarrow f(s)$ in $g x s'$
coin_flip $f g = \lambda s.$ (if shd s then f else g, stl s)

• For example, if dice is a program that generates a dice throw from a sequence of coin flips, then

two_dice = bind dice $(\lambda x. bind dice (\lambda y. unit (x + y)))$

generates the sum of two dice.

Example: The Binomial $(n, \frac{1}{2})$ **Distribution**

- Definition of a sampling algorithm for the $\mathsf{Binomial}(n,\frac{1}{2})$ distribution:
 - $\vdash \text{ bit} = \text{coin_flip (unit 1) (unit 0)}$

$$\vdash$$
 binomial $0 = unit 0 \land$

 $\forall n$.

binomial (suc n) = bind bit (λx . bind (binomial n) (λy . unit (x + y)))

Correctness theorem:

$$\vdash \forall n, r. \mathbb{P}\left\{s \mid \mathsf{fst} \; (\mathsf{binomial} \; n \; s) = r\right\} = \binom{n}{r} \left(\frac{1}{2}\right)^n$$

Probabilistic Termination

- The Binomial $(n, \frac{1}{2})$ sampling algorithm is guaranteed to terminate within n coin-flips.
- The following algorithm generates dice throws from coin-flips (Knuth and Yao, 1976):

- The backward loops introduce the possibility of looping forever.
- But the probability of this happening is 0.
- Probabilistic termination: the program terminates with probability 1.

Probabilistic Termination

- Probabilistic termination is more expressive than guaranteed termination.
- No coin-flip algorithm that is guaranteed to terminate can sample from the following distributions:
 - Uniform(3): choosing one of 0, 1, 2 each with probability $\frac{1}{3}$.
 - Geometric $(\frac{1}{2})$: choosing $n \in \mathbb{N}$ with probability $(\frac{1}{2})^{n+1}$. The index of the first head in a sequence of coin-flips.
- We model probabilistic termination in HOL using a probabilistic while loop:

$$\vdash \quad \forall c, b, a.$$

while $c \ b \ a = \text{if } c(a)$ then bind $(b \ a)$ (while $c \ b)$ else unit a

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs

Example Verifications

- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications
- Conclusion

Example: The Uniform(3) **Distribution**

• First make a raw definition of unif3:

 $\vdash \text{ unif3} = \\ \text{while } (\lambda n. n = 3) \\ (\text{coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3}$

Next prove unif3 satisfies probabilistic termination.

• This allows us to derive a recursive definition of unif3:

 $\vdash \text{ unif3} = \text{coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)}$

• The correctness theorem also follows:

 $\vdash \quad \forall n. \mathbb{P}\left\{s \mid \mathsf{fst}\left(\mathsf{unif3}\ s\right) = n\right\} = \mathsf{if}\ n < 3 \mathsf{ then}\ \frac{1}{3} \mathsf{ else}\ 0$

Example: Optimal Dice

A probabilistic finite state automaton:

dice = coin_flip (prob_repeat (coin_flip (coin_flip (unit none) (unit (some 1))) (mmap some (coin_flip (unit 2)(unit 3))))) (prob_repeat (coin_flip (mmap some (coin_flip (unit 4)(unit 5))) (coin_flip (unit (some 6)) (unit none))))

Example: Optimal Dice

• Correctness theorem:

 $\vdash \quad \forall n. \mathbb{P}\left\{s \mid \mathsf{fst} \; (\mathsf{dice} \; s) = n\right\} = \mathsf{if} \; 1 \leq n \land n \leq 6 \mathsf{ then} \; \frac{1}{6} \mathsf{ else} \; 0$

- The dice program takes $3\frac{2}{3}$ coin flips (on average) to output a dice throw.
- Knuth and Yao (1976) show this to be optimal.
- To generate the sum of two dice throws, is it possible to do better than $7\frac{1}{3}$ coin flips?

Example: Optimal Dice

On average, this program takes $4\frac{7}{18}$ coin flips to produce a result, and this is also optimal.

 $\begin{tabular}{ll} \label{eq:sigma} & \vdash & \forall n. \\ & \mathbb{P}\{s \mid \mathsf{fst} \; (\mathsf{two_dice}\; s) = n\} = \\ & \text{if}\; n = 2 \lor n = 12 \; \mathsf{then}\; \frac{1}{36} \\ & \text{else}\; \mathrm{if}\; n = 3 \lor n = 11 \; \mathsf{then}\; \frac{2}{36} \\ & \text{else}\; \mathrm{if}\; n = 4 \lor n = 10 \; \mathsf{then}\; \frac{3}{36} \\ & \text{else}\; \mathrm{if}\; n = 5 \lor n = 9 \; \mathsf{then}\; \frac{4}{36} \\ & \text{else}\; \mathrm{if}\; n = 6 \lor n = 8 \; \mathsf{then}\; \frac{5}{36} \\ & \text{else}\; \mathrm{if}\; n = 7 \; \mathsf{then}\; \frac{6}{36} \\ & \text{else}\; 0 \end{tabular}$

Example: Random Walk

• A drunk exits a pub at point *n*, and lurches left and right with equal probability until he hits home at point 0.

• Will the drunk always get home?

Example: Random Walk

- Perhaps surprisingly, the drunk does always get home.
 - We formalize the proof of this in HOL.
 - Thus the formalized random walk satisfies probabilistic termination.
- This allows us to derive a natural definition of walk:

 $\begin{array}{l} \vdash & \forall n,k. \\ & \text{walk } n \; k = \\ & \text{if } n = 0 \text{ then unit } k \text{ else} \\ & \text{coin_flip (walk } (n+1) \; (k+1)) \; (\text{walk } (n-1) \; (k+1)) \end{array}$

• And prove some neat properties:

 $\vdash \quad \forall n, k. \; \forall^*s. \; \text{even} \; (\mathsf{fst} \; (\mathsf{walk} \; n \; k \; s)) = \mathsf{even} \; (n+k)$

Example: Random Walk

- Can extract walk to ML and simulate it.
 - Use high-quality random bits from /dev/random.
- A typical sequence of results from random walks starting at level 1:

 $57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, \dots$

• Record breakers:

- 34th simulation yields a walk with 2645 steps
- 135th simulation yields a walk with 603787 steps
- 664th simulation yields a walk with 1605511 steps
- Expected number of steps to get home is infinite!

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test, used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

$$\vdash \forall n, t, s. \text{ prime } n \Rightarrow \text{ fst (miller } n t s) = \top$$

$$\vdash \forall n, t. \neg \mathsf{prime} \ n \ \Rightarrow 1 - 2^{-t} \le \mathbb{P}\left\{s \mid \mathsf{fst} \ (\mathsf{miller} \ n \ t \ s) = \bot\right\}$$

Here n is the number to test for primality, and t is the maximum number of iterations allowed.

Example: Miller-Rabin Primality Test

 Can define a pseudo-random number generator in HOL, and interpret miller in the logic to prove numbers composite:

$$\vdash \neg \mathsf{prime}(2^{2^6} + 1) \land \neg \mathsf{prime}(2^{2^7} + 1) \land \neg \mathsf{prime}(2^{2^8} + 1)$$

• Or can manually extract miller to ML, and execute it using /dev/random and calls to GMP:

bits	$\mathbb{E}_{l,n}$	MR	Gen time	MR_1 time
500	99424	99458	0.0443	0.2498
1000	99712	99716	0.0881	0.7284
2000	99856	99852	0.3999	4.2910

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications

Approach 2: pGCL

- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- Conclusion

Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It's Dijkstra's GCL extended with probabilistic choice

$c_1 \ _p \oplus \ c_2$

- Like GCL, the semantics is based on weakest preconditions.
- Important: retains demonic choice

$c_1 \sqcap c_2$

 Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL

Formalizing Probabilistic Guarded Commands

- wlp Verification Condition Generator
- Example Verifications
- Conclusion

pGCL Semantics

• Given a standard program C and a postcondition Q, let P be the weakest precondition that satisfies

[P]C[Q]

- Precondition P is weaker than P' if $P' \Rightarrow P$.
- Such a *P* will always exist and be unique, so think of *C* as a function that transforms postconditions into weakest preconditions.
- pGCL generalizes this to probabilistic programs:
 - Conditions $\alpha \to \mathbb{B}$ become expectations $\alpha \to \text{posreal}$.
 - Expectation P is weaker than P' if $P' \sqsubseteq P$.
 - Think of programs as *expectation transformers*.

pGCL Commands

Model pGCL commands with a HOL datatype:

Note: the probability in Prob can depend on the state.

Derived Commands

Define the following *derived commands* as syntactic sugar:

 $v := e \equiv Assign v e$ $c_1 ; c_2 \equiv \text{Seq } c_1 c_2$ $c_1 \sqcap c_2 \equiv \text{Demon } c_1 c_2$ $c_1 \ _p \oplus \ c_2 \equiv \operatorname{Prob}(\lambda s. \ p) \ c_1 \ c_2$ Cond $b c_1 c_2 \equiv \text{Prob}(\lambda s. \text{ if } b s \text{ then } 1 \text{ else } 0) c_1 c_2$ $v := \{e_1, \dots, e_n\} \quad \equiv \quad v := e_1 \ \sqcap \ \cdots \ \sqcap \ v := e_n$ $v := \langle e_1, \cdots, e_n \rangle \equiv v := e_{1 \ 1/n} \oplus v := \langle e_2, \dots, e_n \rangle$ $p_1 \to c_1 \mid \cdots \mid p_n \to c_n \equiv$ $\begin{cases} \text{Abort} & \text{if none of the } p_i \text{ hold on the current state} \\ \prod_{i \in I} c_i & \text{where } I = \{i \mid 1 \leq i \leq n \land p_i \text{ holds} \} \end{cases}$

In addition, we write v := n + 1 instead of "v" := $\lambda s. s$ "n" + 1.

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

 \vdash (wp (Assert p c) = wp c) \wedge (wp Abort = λr . Zero) \wedge (wp Skip = $\lambda r. r$) \wedge (wp (Assign v e) = $\lambda r, s. r (\lambda w. \text{ if } w = v \text{ then } e s \text{ else } s w$)) \wedge (wp (Seq $c_1 c_2$) = λr . wp c_1 (wp $c_2 r$)) \wedge (wp (Demon $c_1 c_2$) = λr . Min (wp $c_1 r$) (wp $c_2 r$)) \wedge (wp (Prob $p c_1 c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\mathsf{wp} \ c_1 \ r \ s) + (1 - x)(\mathsf{wp} \ c_2 \ r \ s))$ \wedge (wp (While b c) = λr . expect lfp ($\lambda e, s$. if b s then wp c e s else r s))

Weakest Preconditions: Example

• The goal is to end up with variables *i* and *j* containing the same value:

post
$$\equiv$$
 if $i = j$ then 1 else 0.

• First program:

$$pd \equiv i := \langle 0, 1 \rangle ; j := \{0, 1\}$$

$$\vdash wp pd post = Zero$$

• Second program:

$$dp \equiv j := \{0, 1\}; i := \langle 0, 1 \rangle$$

$$\vdash wp dp post = \lambda s. 1/2.$$

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands

wlp Verification Condition Generator

- Example Verifications
- Conclusion

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

 $(\mathsf{wlp} (\mathsf{Assert} \ p \ c) = \mathsf{wlp} \ c)$ \vdash \wedge (wlp Abort = λr . Magic) \wedge (wlp Skip = $\lambda r. r$) \wedge (wlp (Assign v e) = $\lambda r, s. r (\lambda w. \text{ if } w = v \text{ then } e s \text{ else } s w$)) \wedge (wlp (Seq $c_1 c_2$) = λr . wlp c_1 (wlp $c_2 r$)) \wedge (wlp (Demon $c_1 c_2$) = λr . Min (wlp $c_1 r$) (wlp $c_2 r$)) \wedge (wlp (Prob $p c_1 c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\mathsf{wlp} \ c_1 \ r \ s) + (1 - x)(\mathsf{wlp} \ c_2 \ r \ s))$ \wedge (wlp (While b c) =

 $\lambda r. \text{ expect_gfp } (\lambda e, s. \text{ if } b \ s \text{ then wlp } c \ e \ s \text{ else } r \ s))$

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the simplest infinite loop:

```
loop \equiv While (\lambda s. \top) Skip
```

• For any postcondition *post*, we have

 \vdash wp loop *post* = Zero \land wlp loop *post* = Magic

• These correspond to the Hoare triples

 $[\bot] \operatorname{loop} [post] \qquad \{\top\} \operatorname{loop} \{post\}$

as we would expect from an infinite loop.

Calculating wlp Lower Bounds

- Suppose we have a pGCL command *c* and a postcondition *q*.
- We wish to derive a lower bound on the weakest liberal precondition.
- Can think of this as the first-order query $P \sqsubseteq wlp \ c \ q$.
- Idea: use a Prolog interpreter to solve for the variable *P*.

Calculating wlp: Rules

Example Rules:

- Magic \sqsubseteq wlp Abort Q
- $Q \sqsubseteq wlp Skip Q$
- $R \sqsubseteq wlp C_2 Q \land P \sqsubseteq wlp C_1 R \Rightarrow$ $P \sqsubseteq wlp (Seq C_1 C_2) Q$
- $P_1 \sqsubseteq \mathsf{wlp} \ C_1 \ Q \land P_2 \sqsubseteq \mathsf{wlp} \ C_2 \ Q \Rightarrow$ Min $P_1 \ P_2 \sqsubseteq \mathsf{wlp} \ (\mathsf{Demon} \ C_1 \ C_2) \ Q$

Note: the Prolog interpreter automatically calculates the 'middle condition' in a Seq command.

Calculating wlp: While Loops

• We use the following theorem about While loops:

 $\vdash \forall P, Q, b, c.$ $P \sqsubseteq \mathsf{lf} \ b \ (\mathsf{wlp} \ c \ P) \ Q \Rightarrow P \sqsubseteq \mathsf{wlp} \ (\mathsf{While} \ b \ c) \ Q$

- Cannot use in this form, because of the repeated occurrence of P in the premise.
- Instead, provide a rule that requires an assertion:
 - $R \sqsubseteq wlp \ C \ P \land P \sqsubseteq lf \ b \ R \ Q \Rightarrow$ $P \sqsubseteq wlp (Assert \ P (While \ b \ c)) \ Q$
- The second premise generates a *verification condition* as an extra subgoal.
- It is left to the user to provide a useful loop invariant in the Assert around the while loop.

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator

• Example Verifications

Conclusion

Example: Monty Hall

contestant *switch* \equiv $pc := \{1, 2, 3\};$ $cc := \langle 1, 2, 3 \rangle$; $pc \neq 1 \land cc \neq 1 \rightarrow ac := 1$ $| pc \neq 2 \land cc \neq 2 \rightarrow ac := 2$ $| pc \neq 3 \land cc \neq 3 \rightarrow ac := 3;$ if \neg *switch* then Skip else $cc := (if \ cc \neq 1 \land ac \neq 1 \text{ then } 1)$ else if $cc \neq 2 \land ac \neq 2$ then 2 else 3)

The postcondition is simply the desired goal of the contestant, i.e.,

win
$$\equiv$$
 if $cc = pc$ then 1 else 0.

Example: Monty Hall

- Verification proceeds by:
 - 1. Rewriting away all the syntactic sugar.
 - 2. Expanding the definition of wp.
 - 3. Carrying out the numerical calculations.
- After 22 seconds and 250536 primitive inferences in the logical kernel:
 - \vdash wp (contestant *switch*) win = λs . if *switch* then 2/3 else 1/3
- In other words, by switching the contestant is twice as likely to win the prize.
- Not trivial to do by hand, because the intermediate expectations get rather large.

- Suppose *N* processors are executing concurrently, and from time to time some of them need to enter a critical section of code.
- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing a leader who is permitted to enter the critical section:
 - 1. Each of the waiting processors repeatedly tosses a fair coin until a head is shown
 - 2. The processor that required the largest number of tosses wins the election.
 - 3. If there is a tie, then have another election.
- Could implement the coin tossing using n := 0; b := 0; While (b = 0) $(n := n + 1; b := \langle 0, 1 \rangle)$

For our verification, we do not model *i* processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

- 1. Initialize *i* with the number of processors waiting to enter the critical section who have just picked a number.
- 2. Initialize n with 1, the lowest number not yet considered.
- 3. If i = 1 then we have a unique winner: return SUCCESS.
- 4. If i = 0 then the election has failed: return FAILURE.
- 5. Reduce i by eliminating all the processors who picked the lowest number n (since certainly none of them won the election).
- 6. Increment n by 1, and jump to Step 3.

The following pGCL program implements this data refinement:

rabin \equiv While (1 < i) (n := i; While (0 < n) $(d := \langle 0, 1 \rangle$; i := i - d; n := n - 1))

The desired postcondition representing a unique winner of the election is

post
$$\equiv$$
 if $i = 1$ then 1 else 0

• The precondition that we aim to show is

```
pre \equiv if i = 1 then 1 else if 1 < i then 2/3 else 0
```

"For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce a unique winner is 2/3, except for the trivial case of one processor when it will always succeed."

- Surprising: The probability of success is independent of the number of processors.
- We formally verify the following statement of partial correctness:

 $pre \sqsubseteq wlp rabin post$

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply *pre*.
- For the inner loop we used

if $0 \le n \le i$ then (2/3) * invar1 i n + invar2 i n else 0

where

invar1 $i n \equiv$ $1 - (\text{if } i = n \text{ then } (n+1)/2^n \text{ else if } i = n+1 \text{ then } 1/2^n \text{ else } 0)$ invar2 $i n \equiv \text{if } i = n \text{ then } n/2^n \text{ else if } i = n+1 \text{ then } 1/2^n \text{ else } 0$

Coming up with these was the hardest part of the verification.

The verification proceeded as follows:

- 1. Create the annotated program annotated_rabin.
- 2. Prove wlp rabin = wlp annotated_rabin
- 3. Use this to reduce the goal to

pre \sqsubseteq wlp annotated_rabin *post*

4. This is in the correct form to apply the VC generator.5. Finish off the VCs with 58 lines of HOL-4 proof script.

Contents

- Introduction
- Approach 1: Monads
 - Formalizing Probability
 - Modelling Probabilistic Programs
 - Example Verifications
- Approach 2: pGCL
 - Formalizing Probabilistic Guarded Commands
 - wlp Verification Condition Generator
 - Example Verifications

Conclusion

Conclusion

Advantages of Monad Approach

- Grounded in measure theory.
 - Probabilities more than real numbers.
- More suitable for verifying functional programs.
 - Simple to lift verified HOL functions to ML.
- Can reason about the distinction between probabilistic and guaranteed termination.
 - Practical difference: operating systems typically provide a source of random bits.

Conclusion

Advantages of pGCL Approach

- Supports the demonic choice programming construct.
 - Can be used to verify distributed algorithms.
- Verification easier to carry out than monad approach.
 - Modelling programs with expectation transformers is a useful abstraction.
- Deep embedding: can quantify over all programs.
 - May be useful for modelling a 'spy' in a security protocol verification.

Future Work: combine these approaches to get the best of both worlds.

Related Work

- Formal methods for probabilistic programs:
 - Hurd's thesis, 2002.
 - Probabilistic invariants for probabilistic machines, Hoang et. al., 2003.
 - Christine Paulin's work in Coq, 2002.
 - Prism model checker, Kwiatkowska et. al., 2000-
- Mechanized program semantics:
 - Formalizing Dijkstra, Harrison, 1998.
 - Hoare Logics in Isabelle/HOL, Nipkow, 2001.
 - Mechanizing program logics in higher order logic, Gordon, 1989.
 - A mechanically verified verification condition generator, Homeier and Martin, 1995.

Related Work

- Semantics of Probabilistic Programs:
 - Semantics of Probabilistic Programs, Kozen, 1979.
 - Termination of Probabilistic Concurrent Processes, Hart, Sharir and Pnueli, 1983.
 - *Probabilistic Non-Determinism*, Jones, 1990.
 - Probabilistic predicate transformers, Morgan, McIver, Seidel and Sanders, 1994–
 - Notes on the Random Walk: an Example of Probabilistic Temporal Reasoning, 1996
 - Proof Rules for Probabilistic Loops, Morgan, 1996