
Automatic First-Order Proof in HOL
Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Automatic First-Order Proof in HOL – Joe Hurd – p.1/32

Contents

• Introduction
• Logical Interface

• First-Order Calculi

• Comparison with MESON_TAC.

• Conclusion

Automatic First-Order Proof in HOL – Joe Hurd – p.2/32

Introduction

1. Why does HOL need automatic first-order proof?

2. What’s wrong with MESON_TAC?

3. What’s wrong with GANDALF_TAC?

4. What’s new in this system?

Automatic First-Order Proof in HOL – Joe Hurd – p.3/32

Automatic First-Order Proof: Why?

Consider the following HOL subgoal:
...

1 subgoal:

> val it =

(!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

: goalstack

- ???

Automatic First-Order Proof in HOL – Joe Hurd – p.4/32

Automatic First-Order Proof: Why?

First, identify relevant lemmas:
...

1 subgoal:

> val it =

(!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

: goalstack

- [LESS_SUC_REFL, num_CASES];

> val it =

[|- !n. n < SUC n,

|- !m. m = 0 \/ ?n. m = SUC n]

: thm list

- ???

Automatic First-Order Proof in HOL – Joe Hurd – p.5/32

Automatic First-Order Proof: Why?

Proof 1: The HOL guru way.
...

1 subgoal:

> val it =

(!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

: goalstack

- e (DISCH_THEN (fn t => NTAC 2 STRIP_TAC THEN MP_TAC (Q.ID_SPEC t))

THEN DISCH_THEN MATCH_MP_TAC

THEN (Cases THEN1 ASM_REWRITE_TAC [])

THEN DISCH_THEN (MP_TAC o Q.SPEC ‘n’‘)

THEN ASM_REWRITE_TAC [LESS_SUC_REFL]);

OK..

Goal proved.

|- (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

Automatic First-Order Proof in HOL – Joe Hurd – p.6/32

Automatic First-Order Proof: Why?

Proof 2: A simpler approach.
...

1 subgoal:

> val it =

(!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

: goalstack

- e (METIS_TAC [LESS_SUC_REFL, num_CASES]);

OK..

metis: m-0-1-2-3-4-5-6r|*|0+7x0+0+0+0+0+0+0+0+0+1+3+1+0+0+

0+3+0+2+2+4+2+0+4+1x2+3+#

Goal proved.

|- (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>

!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

Automatic First-Order Proof in HOL – Joe Hurd – p.7/32

What’s Wrong with MESON_TAC?

• MESON_TAC is the existing first-order prover in HOL.

• Based on the model elimination calculus.
• Added to HOL in 1996 by John Harrison.

• Today, building the core distribution of HOL uses
MESON_TAC to prove 1779 subgoals:

• Up from 1428 on 7 June (the Kananaskis-1 release).
• A further 2024 subgoals in the examples.

• Clearly the kind of tool that users want.

Automatic First-Order Proof in HOL – Joe Hurd – p.8/32

What’s Wrong with MESON_TAC?

• MESON_TAC doesn’t support boolean variables;
• ‘‘?x. x‘‘

• doesn’t treat λ-terms properly;
• ‘‘p (\x. x) /\ q ==> q /\ p (\y. y)‘‘

• isn’t completely robust;
• ‘‘˜q c /\ (!x. q x ==> ((x = c) \/ (p ((=) x)))) ==>

!x. q x ==> (p ((=) x))‘‘

• and implements a weak calculus for equality.
• ‘‘(!x y. x * y = y * x) /\ (!x y z. x * y * z = x * (y * z)) ==>

a * b * c * d * e * f = f * e * d * c * b * a‘‘

• What we’d like is a beefed up version of MESON_TAC.

Automatic First-Order Proof in HOL – Joe Hurd – p.9/32

What’s Wrong with GANDALF_TAC?

• GANDALF_TAC is a HOL tactic that calls GANDALF.

• GANDALF won the CADE ATP competition in 1998.

• Socket communications between HOL and GANDALF.
• Michael Norrish’s Prosper Plug-in Interface made

this easy.

• The first-order calculus is powerful,
and the C implementation is speedy.

• But there is a lot of infrastructure to maintain,
and hard to tailor the first-order prover for HOL goals.

• GANDALF_TAC is obsolete today. . .
. . . but maybe it was ahead of its time?

Automatic First-Order Proof in HOL – Joe Hurd – p.10/32

What’s New in This System?

• Not much! (Mainly an engineering challenge.)

• Robustly mapping formula between higher-order and
first-order logic.

• Implementing efficient first-order calculi in ML.

• Main novelty: a clean logical interface between HOL
and first-order logic.

Automatic First-Order Proof in HOL – Joe Hurd – p.11/32

Contents

• Introduction

• Logical Interface
• First-Order Calculi

• Comparison with MESON_TAC.

• Conclusion

Automatic First-Order Proof in HOL – Joe Hurd – p.12/32

Logical Interface

• Can program versions of first-order calculi that work
directly on HOL terms.

• But types (and λ’s) add complications;
• and then the mapping from HOL terms to first-order

logic is hard-coded.

• Would like to program versions of the calculi that work
on standard first-order terms, and have someone else
worry about the mapping to HOL terms.

• Then coding is simpler and the mapping is flexible;
• but how can we keep track of first-order proofs, and

automatically translate them to HOL?

Automatic First-Order Proof in HOL – Joe Hurd – p.13/32

First-order Logical Kernel

Use the ML type system to create an LCF-style logical
kernel for clausal first-order logic:

signature Kernel = sig

(* An ABSTRACT type for theorems *)

eqtype thm

(* Destruction of theorems is fine *)

val dest_thm : thm → formula list × proof

(* But creation is only allowed by these primitive rules *)

val AXIOM : formula list → thm

val REFL : term → thm

val ASSUME : formula → thm

val INST : subst → thm → thm

val FACTOR : thm → thm

val RESOLVE : formula → thm → thm → thm

val EQUALITY : formula → int list → term → bool → thm → thm

end

Automatic First-Order Proof in HOL – Joe Hurd – p.14/32

Making Mappings Modular

The logical kernel keeps track of proofs, and allows the
HOL mapping to first-order logic to be modular:

signature Mapping =

sig

(* Mapping HOL goals to first-order logic *)

val map_goal : HOL.term → FOL.formula list

(* Translating first-order logic proofs to HOL *)

type Axiom_map = FOL.formula list → HOL.thm

val translate_proof : Axiom_map → Kernel.thm → HOL.thm

end

Implementations of Mapping simply provide HOL versions of
the primitive inference steps in the logical kernel, and then
all first-order theorems can be translated to HOL.

Automatic First-Order Proof in HOL – Joe Hurd – p.15/32

Type Information?

• It is not necessary to include type information in the
mapping from HOL terms to first-order terms/formulas.

• Principal types can be inferred when translating
first-order terms back to HOL.

• This wouldn’t be the case if the type system was
undecidable (e.g., the PVS type system).

• But for various reasons the untyped mapping
occasionally fails.

• We’ll see examples of this later.

Automatic First-Order Proof in HOL – Joe Hurd – p.16/32

Four Mappings

We have implemented four mappings from HOL to
first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping First-order formula
first-order, untyped n < n + 1

first-order, typed (n : N) < ((n : N) + (1 : N) : N)

higher-order, untyped ↑ ((< . n) . ((+ . n) . 1))

higher-order, typed
↑ (((< : N → N → B) . (n : N) : N → B) .

(((+ : N → N → N) . (n : N) : N → N) . (1 : N) : N) : B)

Automatic First-Order Proof in HOL – Joe Hurd – p.17/32

Mapping Efficiency

• Effect of the mapping on the time taken by model
elimination calculus to prove a HOL version of Łoś’s
‘nonobvious’ problem:

Mapping untyped typed
first-order 1.70s 2.49s
higher-order 2.87s 7.89s

• These timing are typical, although 2% of the time
higher-order, typed does beat first-order, untyped.

• We run in untyped mode, and if an error occurs during
proof translation then restart search in typed mode.
• Restarts 17+3 times over all 1779+2024 subgoals.

Automatic First-Order Proof in HOL – Joe Hurd – p.18/32

Mapping Coverage

higher-order
√

first-order ×

` ∀f, s, a, b. (∀x. f x = a) ∧ b ∈ image f s ⇒ (a = b)

(f has different arities)

` ∃x. x (x is a predicate variable)

` ∃f. ∀x. f x = x (f is a function variable)

typed
√

untyped ×

` length ([] : N
∗) = 0 ∧ length ([] : R

∗) = 0 ⇒
length ([] : R

∗) = 0 (indistinguishable terms)

` ∀x. S K x = I (extensionality applied too many times)

` (∀x. x = c) ⇒ a = b (bad proof via > = ⊥)

Automatic First-Order Proof in HOL – Joe Hurd – p.19/32

Contents

• Introduction

• Logical Interface

• First-Order Calculi
• Comparison with MESON_TAC.

• Conclusion

Automatic First-Order Proof in HOL – Joe Hurd – p.20/32

First-Order Calculi

• Implemented ML versions of several first-order calculi.

• Model elimination; resolution; the delta preprocessor.
• Trivial reduction to our first-order primitive inferences.

• Can run them simultaneously using time slicing.

• They cooperate by contributing to a central pool of
unit clauses.

• Used the TPTP problem set for most of the tuning.
• Verified correlation between performance on TPTP

and performance on HOL subgoals.

Automatic First-Order Proof in HOL – Joe Hurd – p.21/32

Model Elimination

• Similar search strategy (but not identical!) to MESON_TAC.

• Incorporated three major optimizations:
• Ancestor pruning (Loveland).
• Unit lemmaizing (Astrachan and Stickel).
• Divide & conquer searching (Harrison).

• Unit lemmaizing gave a big win.
• The logical kernel made it easy to spot unit clauses.
• Surprise: divide & conquer searching can prevent

useful unit clauses being found!

Automatic First-Order Proof in HOL – Joe Hurd – p.22/32

Resolution

• Implements ordered resolution and ordered
paramodulation.

• Powerful equality calculus allows proofs way out of
MESON_TAC’s range:

‘‘(!x y. x*y = y*x) /\

(!x y z. x*y*z = x*(y*z)) ==>

a*b*c*d*e*f*g*h*i = i*h*g*f*e*d*c*b*a‘‘

• Had to tweak it for HOL in two important ways:
• Avoid paramodulation into a typed variable.
• Sizes of clauses shouldn’t include types.

Automatic First-Order Proof in HOL – Joe Hurd – p.23/32

Delta Preprocessor

• Schumann’s idea: perform shallow resolutions on
clauses before passing them to model elimination
prover.

• Our version: for each predicate P/n in the goal, use
model elimination to search for unit clauses of the form
P (X1, . . . , Xn) and ¬P (Y1, . . . , Yn).

• Doesn’t directly solve the goal, but provides help in the
form of unit clauses.

Automatic First-Order Proof in HOL – Joe Hurd – p.24/32

TPTP Evaluation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

rmd
rm
rd

r
md

m

Automatic First-Order Proof in HOL – Joe Hurd – p.25/32

TPTP Evaluation

Total “unsatisfiable” problems in TPTP = 3297

rmd rm rd r md m total

rmd ∗
+20

95.0%
+238

99.5%
+351

99.5%
+575

99.5%
+591

99.5% 1819

rm +11 ∗
+231

99.5%
+338

99.5%
+575

99.5%
+591

99.5% 1811

rd +10 +12 ∗
+114

99.5%
+558

99.5%
+571

99.5% 1592

r +14 +10 +5 ∗
+549

99.5%
+562

99.5% 1483

md +72 +81 +283 +383 ∗
+21

99.5% 1316

m +69 +78 +277 +377 +2 ∗ 1297

Automatic First-Order Proof in HOL – Joe Hurd – p.26/32

Contents

• Introduction

• Logical Interface

• First-Order Calculi

• Comparison with MESON_TAC.
• Conclusion

Automatic First-Order Proof in HOL – Joe Hurd – p.27/32

Comparison with MESON_TAC

Total subgoals: 1779 + 2024 = 3803

Proved by MESON_TAC: 1779 + 2017 = 3796

Proved by METIS_TAC: 1774 + 2007 = 3781

prob_53(0.02) prob_44(0.02) int_arith_139(0.09)

DeepSyntax_47(0.11) Omega_13(0.11) euclid_8(0.2)

measure_138(0.23) MachineTransition_0(0.29) nc_6(0.38)

prob_169(0.39) prob_170(0.42) fol_1(0.8)

measure_86(0.93) Omega_71(1.78) fol_2(7.63)

TIME DIFFERENCE

Arithmetic mean: 0.30s

Geometric mean: 318%

Automatic First-Order Proof in HOL – Joe Hurd – p.28/32

HOL Evaluation

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2

Meson
Metis

Automatic First-Order Proof in HOL – Joe Hurd – p.29/32

Contents

• Introduction

• Logical Interface

• First-Order Calculi

• Comparison with MESON_TAC.

• Conclusion

Automatic First-Order Proof in HOL – Joe Hurd – p.30/32

Conclusions

• Use METIS_TAC in your HOL proofs today!
• Just do load "metisLib"; open metisLib; to

make METIS_TAC and METIS_PROVE available.

• However, it’s not the right time to retire MESON_TAC.
• Given the fragile nature of first-order provers, it’s

quite useful to have two complementary tactics.

• Relied on the logical interface to abstract away (almost)
all the details of higher-order logic.

• Proof logging is simple in any first-order calculus.
• Refutations are automatically lifted to HOL.

• More re-implementation than research up to this point,
but now there is plenty of scope for original work that
can be done in HOL.

Automatic First-Order Proof in HOL – Joe Hurd – p.31/32

Future Work

• Specialize first-order prover to create point tools:
• Simple arithmetic reasoning.
• Support predicate subtyping via always-fire rules.
• Decision procedure for theories such as finite_map.

• Would really like to store theorems, so the user doesn’t
have to find the right lemmas each time.

• Improved treatment of combinators at first-order level
(pattern unification?).

• Use the interface to create a new link to ‘industrial
strength’ first-order provers.

• More powerful first-order calculus: Knuth-Bendix
completion, semantic constraints, etc, etc, . . .

Automatic First-Order Proof in HOL – Joe Hurd – p.32/32

	Contents
	Introduction
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	What's Wrong with $ml {MESON_TAC}$?
	What's Wrong with $ml {MESON_TAC}$?
	What's Wrong with $ml {GANDALF_TAC}$?
	What's New in This System?
	Contents
	Logical Interface
	First-order Logical Kernel
	Making Mappings Modular
	Type Information?
	Four Mappings
	Mapping Efficiency
	Mapping Coverage
	Contents
	First-Order Calculi
	Model Elimination
	Resolution
	Delta Preprocessor
	TPTP Evaluation
	TPTP Evaluation
	Contents
	Comparison with $ml {MESON_TAC}$
	HOL Evaluation
	Contents
	Conclusions
	Future Work

