o .

Automatic First-Order Proof in HOL

Joe Hurd
j oe. hurd@l . cam ac. uk

University of Cambridge

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.1/3:

Contents

Introduction

Logical Interface
First-Order Calculi
Comparison with MESON_TAC.
Conclusion

-

Automatic First-Order Proof in HOL — Joe Hurd — p.2/3:

1. W
2. W
3. W
4. W

Introduction

nat’s wrong with MESON_TAC?
nat’s wrong with GANDALF TAC?

nat's new in this system?

ny does HOL need automatic first-order proof?

=

-

Automatic First-Order Proof in HOL — Joe Hurd — p.3/3:

Automatic First-Order Proof: Why?

o .

Consider the following HOL subgoal:

1 subgoal:
> val 1t =
('P. (In. (Im_.m<n=>Pm) ==>Pn) ==>1In. Pn) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In_. Pn
- goalstack

- 7?77

Automatic First-Order Proof: Why?
- -

First, identify relevant lemmas:

1 subgoal:
> val 1t =
('P. (In. (Im_.m<n=>Pm) ==>Pn) ==>1In. Pn) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In_. Pn
- goalstack

- [LESS_SUC_REFL, num_CASES];

> val 1t =
[I- 'n. n < SUC n,
|- 'm. m =0\ ?n. m = SUC nj
> thm list

- 7?77

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.5/3:

Automatic First-Order Proof: Why?
- -

Proof 1: The HOL guru way.

1 subgoal:
> val 1t =
('P. (In. (Im_.m<n=>Pm) ==>Pn) ==>1In. Pn) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In_. Pn
- goalstack

— e (DISCH_THEN (fn t => NTAC 2 STRIP_TAC THEN MP_TAC (Q.ID_SPEC t))
THEN DISCH_THEN MATCH_MP_TAC
THEN (Cases THEN1 ASM_REWRITE_TAC [1)
THEN DISCH_THEN (MP_TAC o Q.SPEC “n”<)
THEN ASM_REWRITE_TAC [LESS SUC REFL]);

OK..

Goal proved.

I- ('P. (In. ('Im. m<n=>Pm) ==>Pn) ==> In. P n) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In. P n

Automatic First-Order Proof in HOL — Joe Hurd — p.6/3:

Automatic First-Order Proof: Why?
- -

Proof 2: A simpler approach.

1 subgoal:
> val 1t =
('P. (In. (Im_.m<n=>Pm) ==>Pn) ==>1In. Pn) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In_. Pn
- goalstack

— e (METIS_TAC [LESS SUC REFL, num_CASESD):
OK. .

metis: m-0-1-2-3-4-5-6r]*|0+7x0+0+0+0+0+0+0+0+0+1+3+1+0+0+
0+3+0+2+2+4+2+0+4+1x2+3+#

Goal proved.
|- (P (In. (Im. m<n=>Pm) ==>P n) ==> In. P n) ==>
IP. PO /\ (In. Pn=>P (SUC n)) ==> In. P n

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.7/3:

What’s Wrong with MESON_TAC?
- -

e MESON_TAC Is the existing first-order prover in HOL.

Based on the model elimination calculus.
Added to HOL in 1996 by John Harrison.

e Today, building the core distribution of HOL uses
MESON_TAC to prove 1779 subgoals:

Up from 1428 on 7 June (the Kananaskis-1 release).
A further 2024 subgoals in the examples.

e Clearly the kind of tool that users want.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.8/3:

What’s Wrong with MESON_TAC?

o .

e MESON TAC doesn’t support boolean variables;
RS D G

e doesn’t treat \-terms properly;
““p (\x. X) I\ g==>qg/\ p (\y. y)*"

e Isn’t completely robust;

g c /N (Ix. gx => (X =0) V(e () X)) ==>
Ix. g x => (p () X))**

e and implements a weak calculus for equality.

““(XxXy. x*y=y*x)O/N\N(Ixyz. x*y*z=x*((y *z2) =
a*b*c*d*e*f=FfF*e*d*c*Db™*a““

e What we’d like is a beefed up version of MESON TAC.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.9/3:

What’s Wrong with GANDALF TAC?

o .

e GANDALF TAC Is a HOL tactic that calls GANDALF.
GANDALF won the CADE ATP competition in 1998.

e Socket communications between HOL and GANDALF.

Michael Norrish’s Prosper Plug-in Interface made
this easy.

e But there is a lot of infrastructure to maintain,
and hard to tailor the first-order prover for HOL goals.

e GANDALF_TAC IS obsolete today. ..
... but maybe it was ahead of its time?

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.10/3:

What’s New In This System?

o .

Robustly mapping formula between higher-order and
first-order logic.

Implementing efficient first-order calculi in ML.

e Not much! (Mainly an engineering challenge.)

e Main novelty: a clean logical interface between HOL
and first-order logic.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.11/3:

Contents

Introduction

Logical Interface

First-Order Calculi
Comparison with MESON_ TAC.
Conclusion

Logical Interface
- -

e Can program versions of first-order calculi that work
directly on HOL terms.

But types (and)\’s) add complications;

and then the mapping from HOL terms to first-order
logic Is hard-coded.

e Would like to program versions of the calculi that work
on standard first-order terms, and have someone else
worry about the mapping to HOL terms.

but how can we keep track of first-order proofs, and
automatically translate them to HOL?

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.13/3:

First-order Logical Kernel

ste the ML type system to create an LCF-style logical T
kernel for clausal first-order logic:

signature Kernel = sig
(* An ABSTRACT type for theorems *)
egtype thm

(* Destruction of theorems i1s fine *)

(* But creation i1s only allowed by these primitive rules *)

val AXIOM : formula list — thm
val REFL : term — thm

val ASSUME : formula — thm

val [INST : subst — thm — thm
val FACTOR - thm — thm

val RESOLVE : formula — thm — thm — thm
val EQUALITY : formula — i1nt list — term — bool — thm — thm

end

Automatic First-Order Proof in HOL — Joe Hurd — p.14/3:

Making Mappings Modular

o .

The logical kernel keeps track of proofs, and allows the
HOL mapping to first-order logic to be modular:

signature Mapping =

sig
(* Mapping HOL goals to first-order logic *)
val map goal : HOL.term — FOL.formula list

(* Translating first-order logic proofs to HOL *)

type Axiom_map = FOL.formula list — HOL.thm

val translate proof : Axiom _map — Kernel.thm — HOL.thm
end

Implementations of Mapping simply provide HOL versions of
the primitive inference steps in the logical kernel, and then
all first-order theorems can be translated to HOL.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.15/3:

Type Information?

f e It Is not necessary to include type information in the T
mapping from HOL terms to first-order terms/formulas.

e Principal types can be inferred when translating
first-order terms back to HOL.

This wouldn’t be the case If the type system was
undecidable (e.g., the PVS type system).

e But for various reasons the untyped mapping
occasionally fails.

We’'ll see examples of this later.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.16/3:

Four Mappings
- -

We have implemented four mappings from HOL to
first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping First-order formula
first-order, untyped n<n+4+1
first-order, typed (m:N)<((n:N)+(1:N):N)

higher-order, untyped 1 ((<.n).((+.n).1))
higher-order, typed
T((«:N=N—=B).(n:N):N—B).

((+: N->N—=N).m:N): N—=N).(1:N):N):B)

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.17/3:

Mapping Efficiency
- -

o Effect of the mapping on the time taken by model

elimination calculus to prove a HOL version of £0S’s
‘nonobvious’ problem:

Mapping untyped | typed
first-order 1.70s | 2.49s
higher-order 2.87s | 7.89s

e These timing are typical, although 2% of the time
higher-order, typed does beat first-order, untyped.

e We run in untyped mode, and if an error occurs during
proof translation then restart search in typed mode.

Restarts 17+3 times over all 1779+2024 subgoals.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.18/3:

Mapping Coverage
-

higher-order first-order x

- Vf,s,a,b. V. fz=a) AN bEimage fs = (a=0)

(f has different arities)
- dx. x (z is a predicate variable)
- Elf. V. f r =2 (f is a function variable)

typed untyped x

= length (|| : N*) =0 A length (|| :R*) =0 =

Iength (H : R*) =0 (indistinguishable terms)
= V. SKzx =1 (extensionality applied too many times)
L = (\V/ZC. Xr = C) = a=2> (bad proofvia T = 1)

-

-

Automatic First-Order Proof in HOL — Joe Hurd — p.19/3:

Contents

Introduction
Logical Interface

First-Order Calculi

Comparison with MESON_ TAC.
Conclusion

First-Order Calculi

o .

Model elimination; resolution; the delta preprocessor.
Trivial reduction to our first-order primitive inferences.

e Implemented ML versions of several first-order calculi.

e Can run them simultaneously using time slicing.

They cooperate by contributing to a central pool of
unit clauses.

e Used the TPTP problem set for most of the tuning.

Verified correlation between performance on TPTP
and performance on HOL subgoals.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.21/3:

Model Elimination

o .

e Similar search strategy (but not identical!) to MESON_TAC.

e Incorporated three major optimizations:
Ancestor pruning (Loveland).
Unit lemmaizing (Astrachan and Stickel).
Divide & conquer searching (Harrison).

e Unit lemmaizing gave a big win.
The logical kernel made it easy to spot unit clauses.

Surprise: divide & conquer searching can prevent
useful unit clauses being found!

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.22/3:

Resolution

f e Implements ordered resolution and ordered T
paramodulation.

e Powerful equality calculus allows proofs way out of
MESON _TAC'S range:
CY(Ix y. x*y = y*x) [\
(Ixy z. Xx*y*z = x*(y*z)) ==>
a*b*c*d*e*f*g*h*i = I *h*g*f*e*d*c*b*a'"’
e Had to tweak it for HOL in two important ways:
Avoid paramodulation into a typed variable.
Sizes of clauses shouldn’t include types.

o -

Automatic First-Order Proof in HOL — Joe Hurd — p.23/3:

Delta Preprocessor

=

Schumann’s idea: perform shallow resolutions on
clauses before passing them to model elimination
prover.

Our version: for each predicate P/n in the goal, use
model elimination to search for unit clauses of the form
P(X1,...,X,) and =P(Y1,...,Yy).

Doesn’t directly solve the goal, but provides help in the
form of unit clauses.

-

Automatic First-Order Proof in HOL — Joe Hurd — p.24/3:

TPTP Evaluation
2000 , | | | | “‘1

1800 [|

1600

1400 |-

1200

1000 £

800 | |

600 - |
rmd

400 i'_ rd]

200 — [e 1

Automatic First-Order Proof in HOL — Joe Hurd — p.25/3:

-

TPTP Evaluation

Total “unsatisfiable” problems in TPTP = 3297

rmd rm rd r m total
+20 +238 +351 +591

rmd | * 95.0% 99.5% 99.5% 99.5% 99.5% | 1819
+11 +231 +338 +591

rm | 2 99.5% 99.5% 99.5% 99.5% | 1811
+114 +571

d | 22 2 99.5% 99.5% 99.5% | 1592
+562

r a0 99.5% 99.5% | 1483
+21

md | =2 8L =88 18 99.5% | 1316

m 69 +78 4277 4377 " 1297

-

Automatic First-Order Proof in HOL — Joe Hurd — p.26/3:

Contents

Introduction
Logical Interface
First-Order Calculi

Comparison with MESON_TAC.

Conclusion

Comparison with MESON_TAC

(__Total subgoal s: 1779 + 2024 = 3803 __W
Proved by MESON TAC. 1779 + 2017 = 3796
Proved by METIS TAC. 1774 + 2007 = 3781

prob 53(0.02) prob 44(0.02) int_arith _139(0.09)
DeepSyntax_47(0.11) Orega 13(0.11) euclid 8(0.2)
nmeasure_ 138(0.23) MachineTransition 0(0.29) nc 6(0. 3¢
prob 169(0.39) prob 170(0.42) fol 1(0.8)

neasure 86(0.93) Omega 71(1.78) fol 2(7.63)

TI ME DI FFERENCE
Arithnetic nean: 0. 30s

L@omtri c nean: 318% J

Automatic First-Order Proof in HOL — Joe Hurd — p.28/3:

4000

3500

3000

2500

2000

1500

1000 [t

500 |-

HOL Evaluation

Meson

0.5 1

|
1.5 2

Automatic First-Order Proof in HOL — Joe Hurd — p.29/3:

Contents

Introduction

Logical Interface
First-Order Calculi
Comparison with MESON_TAC.

Conclusion

-

Automatic First-Order Proof in HOL — Joe Hurd — p.30/3:

Conclusions

=

Use METIS TAC in your HOL proofs today!
Justdo | oad "netisLib"; open netisLib; to
make METIS TAC and METIS PROVE available.
However, it's not the right time to retire MESON_TAC.

Given the fragile nature of first-order provers, it’s
guite useful to have two complementary tactics.

Relied on the logical interface to abstract away (almost)
all the details of higher-order logic.
Proof logging is simple in any first-order calculus.
Refutations are automatically lifted to HOL.
More re-implementation than research up to this point,

but now there Is plenty of scope for original work that
can be done in HOL. J

Automatic First-Order Proof in HOL — Joe Hurd — p.31/3:

Future Work
-

Specialize first-order prover to create point tools:
Simple arithmetic reasoning.
Support predicate subtyping via always-fire rules.
Decision procedure for theories such as finite_map.

Would really like to store theorems, so the user doesn’t
have to find the right lemmas each time.

Improved treatment of combinators at first-order level
(pattern unification?).

Use the Interface to create a new link to ‘industrial
strength’ first-order provers.

More powerful first-order calculus: Knuth-Bendix
completion, semantic constraints, etc, etc, ...

-

Automatic First-Order Proof in HOL — Joe Hurd — p.32/3:

	Contents
	Introduction
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	Automatic First-Order Proof: Why?
	What's Wrong with $ml {MESON_TAC}$?
	What's Wrong with $ml {MESON_TAC}$?
	What's Wrong with $ml {GANDALF_TAC}$?
	What's New in This System?
	Contents
	Logical Interface
	First-order Logical Kernel
	Making Mappings Modular
	Type Information?
	Four Mappings
	Mapping Efficiency
	Mapping Coverage
	Contents
	First-Order Calculi
	Model Elimination
	Resolution
	Delta Preprocessor
	TPTP Evaluation
	TPTP Evaluation
	Contents
	Comparison with $ml {MESON_TAC}$
	HOL Evaluation
	Contents
	Conclusions
	Future Work

