Automatic First-Order Proof in HOL

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Contents

Introduction

- Logical Interface
- First-Order Calculi
- Comparison with MESON_TAC.
- Conclusion

Introduction

- 1. Why does HOL need automatic first-order proof?
- 2. What's wrong with MESON_TAC?
- 3. What's wrong with GANDALF_TAC?
- 4. What's new in this system?

Consider the following HOL subgoal:

- 1 subgoal: > val it = (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==> !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n : goalstack
- ???

First, identify relevant lemmas:

```
1 subgoal:
> val it =
   (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>
    !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n
  : goalstack
- [LESS SUC REFL, num CASES];
> val it =
   [| - !n. n < SUC n,
    |-!m.m = 0 \setminus / ?n.m = SUC n]
   : thm list
```

- ???

Proof 1: The HOL guru way.

- ... 1 subgoal: > val it = (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==> !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n : goalstack
- e (DISCH_THEN (fn t => NTAC 2 STRIP_TAC THEN MP_TAC (Q.ID_SPEC t))
 THEN DISCH_THEN MATCH_MP_TAC
 THEN (Cases THEN1 ASM_REWRITE_TAC [])
 THEN DISCH_THEN (MP_TAC o Q.SPEC `n'`)
 THEN ASM_REWRITE_TAC [LESS_SUC_REFL]);

OK..

Goal proved.

|- (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==> !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

Proof 2: A simpler approach.

1 subgoal: > val it = (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==>!P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n : qoalstack - e (METIS_TAC [LESS_SUC_REFL, num CASES]); OK.. metis: m-0-1-2-3-4-5-6r * 0+7x0+0+0+0+0+0+0+0+0+0+1+3+1+0+0+ 0+3+0+2+2+4+2+0+4+1x2+3+#Goal proved.

|- (!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n) ==> !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

What's Wrong with MESON_TAC?

- MESON_TAC is the existing first-order prover in HOL.
 - Based on the model elimination calculus.
 - Added to HOL in 1996 by John Harrison.
- Today, building the core distribution of HOL uses MESON_TAC to prove 1779 subgoals:
 - Up from 1428 on 7 June (the Kananaskis-1 release).
 - A further 2024 subgoals in the examples.
- Clearly the kind of tool that users want.

What's Wrong with MESON_TAC?

• MESON_TAC doesn't support boolean variables;

• ``?x. x``

doesn't treat λ-terms properly;

• ''p (\x. x) /\ q ==> q /\ p (\y. y)''

• isn't completely robust;

• ``~q c /\ (!x. q x ==> ((x = c) \/ (p ((=) x)))) ==>
!x. q x ==> (p ((=) x))``

• and implements a weak calculus for equality.

• ``(!x y. x * y = y * x) /\ (!x y z. x * y * z = x * (y * z)) ==>
a * b * c * d * e * f = f * e * d * c * b * a``

• What we'd like is a beefed up version of MESON_TAC.

What's Wrong with GANDALF_TAC?

- GANDALF_TAC is a HOL tactic that calls GANDALF.
 - GANDALF won the CADE ATP competition in 1998.
- Socket communications between HOL and GANDALF.
 - Michael Norrish's Prosper Plug-in Interface made this easy.
- The first-order calculus is powerful, and the C implementation is speedy.
- But there is a lot of infrastructure to maintain, and hard to tailor the first-order prover for HOL goals.
- GANDALF_TAC is obsolete today... ...but maybe it was ahead of its time?

What's New in This System?

- Not much! (Mainly an engineering challenge.)
 - Robustly mapping formula between higher-order and first-order logic.
 - Implementing efficient first-order calculi in ML.
- Main novelty: a clean logical interface between HOL and first-order logic.

Contents

- Introduction
- Logical Interface
- First-Order Calculi
- Comparison with MESON_TAC.
- Conclusion

Logical Interface

- Can program versions of first-order calculi that work directly on HOL terms.
 - But types (and λ 's) add complications;
 - and then the mapping from HOL terms to first-order logic is hard-coded.
- Would like to program versions of the calculi that work on standard first-order terms, and have someone else worry about the mapping to HOL terms.
 - Then coding is simpler and the mapping is flexible;
 - but how can we keep track of first-order proofs, and automatically translate them to HOL?

First-order Logical Kernel

Use the ML type system to create an LCF-style logical kernel for clausal first-order logic:

```
signature Kernel = sig
  (* An ABSTRACT type for theorems *)
  eqtype thm
  (* Destruction of theorems is fine *)
  val dest_thm : thm \rightarrow formula list \times proof
  (* But creation is only allowed by these primitive rules *)
  val AXIOM
               : formula list \rightarrow thm
  val REFL : term \rightarrow thm
  val ASSUME : formula \rightarrow thm
  val INST : subst \rightarrow thm \rightarrow thm
  val FACTOR : thm \rightarrow thm
  val RESOLVE : formula \rightarrow thm \rightarrow thm \rightarrow thm
  val EQUALITY : formula \rightarrow int list \rightarrow term \rightarrow bool \rightarrow thm \rightarrow thm
end
```

Making Mappings Modular

The logical kernel keeps track of proofs, and allows the HOL mapping to first-order logic to be modular:

```
signature Mapping =
sig
  (* Mapping HOL goals to first-order logic *)
  val map_goal : HOL.term → FOL.formula list
  (* Translating first-order logic proofs to HOL *)
  type Axiom_map = FOL.formula list → HOL.thm
  val translate_proof : Axiom_map → Kernel.thm → HOL.thm
end
```

Implementations of Mapping simply provide HOL versions of the primitive inference steps in the logical kernel, and then *all* first-order theorems can be translated to HOL.

Type Information?

- It is not necessary to include type information in the mapping from HOL terms to first-order terms/formulas.
- Principal types can be inferred when translating first-order terms back to HOL.
 - This wouldn't be the case if the type system was undecidable (e.g., the PVS type system).
- But for various reasons the untyped mapping occasionally fails.
 - We'll see examples of this later.

Four Mappings

We have implemented four mappings from HOL to first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping

first-order, untyped first-order, typed higher-order, typed

First-order formula

n < n + 1 $(n:\mathbb{N}) < ((n:\mathbb{N}) + (1:\mathbb{N}):\mathbb{N})$ higher-order, untyped $\uparrow ((< . n) . ((+ . n) . 1))$

 $\uparrow (((<:\mathbb{N}\to\mathbb{N}\to\mathbb{B}) . (n:\mathbb{N}):\mathbb{N}\to\mathbb{B}) .$ $(((+:\mathbb{N}\to\mathbb{N}\to\mathbb{N}) . (n:\mathbb{N}):\mathbb{N}\to\mathbb{N}) . (1:\mathbb{N}):\mathbb{B})$

Mapping Efficiency

 Effect of the mapping on the time taken by model elimination calculus to prove a HOL version of Łoś's 'nonobvious' problem:

Mapping	untyped	typed
first-order	1.70s	2.49s
higher-order	2.87s	7.89s

- These timing are typical, although 2% of the time higher-order, typed does beat first-order, untyped.
- We run in untyped mode, and if an error occurs during proof translation then restart search in typed mode.
 - Restarts 17+3 times over all 1779+2024 subgoals.

Mapping Coverage

higher-order $\sqrt{}$ first-order \times

 $\vdash \forall f, s, a, b. \ (\forall x. f \ x = a) \land b \in \text{image } f \ s \ \Rightarrow \ (a = b)$ (f has different arities) $\vdash \exists x. \ x \qquad (x \text{ is a predicate variable})$ $\vdash \exists f. \ \forall x. f \ x = x \qquad (f \text{ is a function variable})$

typed $\sqrt{}$ untyped \times

 $\vdash \text{ length } ([]: \mathbb{N}^*) = 0 \land \text{ length } ([]: \mathbb{R}^*) = 0 \Rightarrow$ $\text{ length } ([]: \mathbb{R}^*) = 0 \qquad \text{ (indistinguishable terms)}$ $\vdash \forall x. \text{ S K } x = \text{I} \qquad \text{ (extensionality applied too many times)}$ $\vdash (\forall x. x = c) \Rightarrow a = b \qquad \text{ (bad proof via } \top = \bot)$

Contents

- Introduction
- Logical Interface

• First-Order Calculi

- Comparison with MESON_TAC.
- Conclusion

First-Order Calculi

- Implemented ML versions of several first-order calculi.
 - Model elimination; resolution; the delta preprocessor.
 - Trivial reduction to our first-order primitive inferences.
- Can run them simultaneously using time slicing.
 - They cooperate by contributing to a central pool of unit clauses.
- Used the TPTP problem set for most of the tuning.
 - Verified correlation between performance on TPTP and performance on HOL subgoals.

Model Elimination

- Similar search strategy (but not identical!) to MESON_TAC.
- Incorporated three major optimizations:
 - Ancestor pruning (Loveland).
 - Unit lemmaizing (Astrachan and Stickel).
 - Divide & conquer searching (Harrison).
- Unit lemmaizing gave a big win.
 - The logical kernel made it easy to spot unit clauses.
 - Surprise: divide & conquer searching can prevent useful unit clauses being found!

Resolution

- Implements ordered resolution and ordered paramodulation.
- Powerful equality calculus allows proofs way out of MESON_TAC's range:

- Had to tweak it for HOL in two important ways:
 - Avoid paramodulation into a typed variable.
 - Sizes of clauses shouldn't include types.

Delta Preprocessor

- Schumann's idea: perform shallow resolutions on clauses before passing them to model elimination prover.
- Our version: for each predicate P/n in the goal, use model elimination to search for unit clauses of the form $P(X_1, \ldots, X_n)$ and $\neg P(Y_1, \ldots, Y_n)$.
- Doesn't directly solve the goal, but provides help in the form of unit clauses.

TPTP Evaluation

TPTP Evaluation

Total "unsatisfiable" problems in TPTP = 3297

	rmd	rm	rd	r	md	m	total
rmd	*	$^{+20}_{95.0\%}$	$^{+238}_{99.5\%}$	$^{+351}_{99.5\%}$	$^{+575}_{99.5\%}$	$^{+591}_{99.5\%}$	1819
rm	+11	*	$^{+231}_{99.5\%}$	$^{+338}_{99.5\%}$	$^{+575}_{99.5\%}$	$^{+591}_{99.5\%}$	1811
rd	+10	+12	*	$^{+114}_{99.5\%}$	$^{+558}_{99.5\%}$	$^{+571}_{99.5\%}$	1592
r	+14	+10	+5	*	$^{+549}_{99.5\%}$	$^{+562}_{99.5\%}$	1483
md	+72	+81	+283	+383	*	$^{+21}_{99.5\%}$	1316
m	+69	+78	+277	+377	+2	*	1297

Contents

- Introduction
- Logical Interface
- First-Order Calculi

Comparison with MESON_TAC.

Conclusion

Comparison with MESON_TAC

Total subgoals: 1779 + 2024 = 3803 Proved by MESON_TAC: 1779 + 2017 = 3796 Proved by METIS_TAC: 1774 + 2007 = 3781

prob_53(0.02) prob_44(0.02) int_arith_139(0.09)
DeepSyntax_47(0.11) Omega_13(0.11) euclid_8(0.2)
measure_138(0.23) MachineTransition_0(0.29) nc_6(0.38
prob_169(0.39) prob_170(0.42) fol_1(0.8)
measure_86(0.93) Omega_71(1.78) fol_2(7.63)

TIME DIFFERENCE Arithmetic mean: 0.30s

Geometric mean: 318%

HOL Evaluation

Contents

- Introduction
- Logical Interface
- First-Order Calculi
- Comparison with MESON_TAC.

Conclusion

Conclusions

- Use METIS_TAC in your HOL proofs today!
 - Just do load "metisLib"; open metisLib; to make METIS_TAC and METIS_PROVE available.
- However, it's not the right time to retire MESON_TAC.
 - Given the fragile nature of first-order provers, it's quite useful to have two complementary tactics.
- Relied on the logical interface to abstract away (almost) all the details of higher-order logic.
 - Proof logging is simple in any first-order calculus.
 - Refutations are automatically lifted to HOL.
- More re-implementation than research up to this point, but now there is plenty of scope for original work that can be done in HOL.

Future Work

- Specialize first-order prover to create *point tools*:
 - Simple arithmetic reasoning.
 - Support predicate subtyping via always-fire rules.
 - Decision procedure for theories such as finite_map.
- Would really like to store theorems, so the user doesn't have to find the right lemmas each time.
- Improved treatment of combinators at first-order level (pattern unification?).
- Use the interface to create a new link to 'industrial strength' first-order provers.
- More powerful first-order calculus: Knuth-Bendix completion, semantic constraints, etc, etc, ...