
Why Computers Go Wrong
(And How To Prevent This)

Joe Hurd
joe.hurd@magd.ox.ac.uk

Magdalen College
Oxford University

Why Computers Go Wrong – Joe Hurd – p.1/12

The First Actual Bug

This is the Harvard Mark II Machine, an
early computer boasting magnetic drum
storage.

On 9 September 1945 it broke down be-
cause a moth got caught between the
points of Relay #70 in Panel F.

At 3:45pm Grace Murray Hopper ex-
tracted it and taped it into the log book
with the comment “First actual case of
bug being found”.

In fact the term bug to mean a snag or
defect was used by Edison as early as
1878.

Why Computers Go Wrong – Joe Hurd – p.2/12

The First Software Bug

This is the EDSAC I, the first computer with a
stored program.

It became operational on 6 May 1949, printing
a table of square numbers. On 7 May 1949 the
log entry reads

Machine still operating, - table of

squares several times. Table of primes at-

tempted - programme incorrect.

Maurice Wilkes recalls the experience of de-
bugging a program in June 1949:

[T]he realization came over me with

full force that a good part of the remainder

of my life was going to be spent in finding

errors in my own programs.

Why Computers Go Wrong – Joe Hurd – p.3/12

Big Software Bugs

In 1996, the $2B Ariane 5 rocket exploded on
its maiden flight because there wasn’t enough
room to store a 64 bit number in a 16 bit
buffer. This caused the Inertial Reference Sys-
tem to crash and output a test pattern, which
the rocket controller interpreted as real flight
data. The rocket changing direction caused it
to disintegrate, which in turn triggered the self
destruct mechanism.

Between 1985 and 1987 several installations
of the Therac 25 linear accelerator, a radiation
machine to treat cancer, caused the deaths of
at least 2 people and injured several more. A
particular combination of operator key presses
caused the patient to be blasted with X-rays
at 125 times the recommended dose for their
condition.

Why Computers Go Wrong – Joe Hurd – p.4/12

What are Bugs?

• Bugs are deviations in behaviour from a specification.

• Hard problem: What are programs supposed to do?
• The Therac 25 software was supposed to blast

people with radiation (just not as much as it did).
• What is a word processor supposed to do?
• What about ambiguities in English?

• Easier: What are programs not supposed to do?
• Crash the computer.
• Interfere with other programs.
• Corrupt data.

Why Computers Go Wrong – Joe Hurd – p.5/12

Debugging Successes

• Memory protection
• Prevents programs interfering with each other.

• High level languages
• Prevents data corruption and crashes.

• Types
• Detect nonsense operations such as “a” + 1.
• Prevents data corruption.

• What else can be done to help prevent programmers
from inserting bugs into programs?

• Warning: In his book The Mythical Man Month, Brooks
claims that there will be “no silver bullet”.

Why Computers Go Wrong – Joe Hurd – p.6/12

Testing

• Q: Why don’t programmers simply test their programs?
• A: They do!
• Testing is an effective technique for finding bugs that

appear frequently.

• If you have a bug in your software that crashes the
computer every 1,000,000 hours on average, then:
• you need 1,000,000 hours of testing to spot the bug;
• but every day it will crash one of your 50,000 users.

• Another problem: how to know when to stop testing?
• “Program testing can be used to show the presence

of bugs, but never to show their absence!” [Dijkstra]

Why Computers Go Wrong – Joe Hurd – p.7/12

Static Analysis

• Consider the following buggy procedure for squaring a
number:
1. Let i be the input number.
2. If i is 1000 then set r to be 17, else set r to be i ∗ i.
3. Return r as the answer.

• Testing is going to have a hard time finding this bug.
• But it’s obvious from looking at the program.

• Static analysis finds bugs by examining the program
before it is executed.
• It’s doesn’t replace testing, it’s complementary.
• It tends to find different kinds of bugs.

Why Computers Go Wrong – Joe Hurd – p.8/12

Proving Programs Correct

• Idea! Prove programs are correct [Turing, 1949]

• Programs and specifications are both formal objects, so
no philosophical objections.
• Warning: it’s a different matter if you run the program

on a real computer :-)

• Bonus: There are no ambiguities in a logic specification.

• Bonus: Completing the proof guarantees correctness.

• Expensive, but starting to be commercially viable.
• Intel now proves floating point operations correct to

avoid another $1B Pentium bug.
• Microsoft uses SLAM to check all device drivers.

Why Computers Go Wrong – Joe Hurd – p.9/12

Probabilistic Programs

1

2

3

4

5

6

0

A dice throw generator [Knuth 1976].
Why Computers Go Wrong – Joe Hurd – p.10/12

Probabilistic Programs

• How to test a dice throw generator?
• 5,2,3,1,2,1,1,2,5,3,5,4,2,3,1,6,5,4,2,3,1 → OK?
• 1,1 → OK?
• Would it perturb you if a coin came up heads 85

times in a row? [Rosencrantz & Guildenstern]

• In my research I prove the correctness of probabilistic
programs:

` ∀n. 1 ≤ n ≤ 6 ⇒ P {s | dice s = n} =
1

6

Why Computers Go Wrong – Joe Hurd – p.11/12

Conclusions

• People will continue to demand highly complex software
that inevitably contain bugs.
• Perhaps even buggy software to automate a task is

better than doing the task manually (or not at all)?

• New verification techniques to keep a lid on this
complexity is a grand challenge of computer science.
• And will allow programmers to write even more

complex software with new kinds of bugs :-)

• Logic is too useful to be left to theoreticians.

Why Computers Go Wrong – Joe Hurd – p.12/12

	The First Actual Bug
	The First Software Bug
	Big Software Bugs
	What are Bugs?
	Debugging Successes
	Testing
	Static Analysis
	Proving Programs Correct
	Probabilistic Programs
	Probabilistic Programs
	Conclusions

