Why Computers Go Wrong
(And How To Prevent This)

Joe Hurd
] oe. hurd@mgd. ox. ac. uk

Magdalen College
Oxford University

-

Why Computers Go Wrong — Joe Hurd — p.1/1.

TheFirst Actual Bug

This is the Harvard Mark Il Machine, an

early computer boasting magnetic drum
e e e e storage.

pesssdnll EEpsscoes | SwSlEEnS
| mwwe | emen

— =
= 33 - — gor . medilnes .
sl + by oo sy

2or B=F=0 : X . . _
P ERED >3 pnt On 9 September 1945 it broke down be

0 35 cause a moth got caught between the
: "0 = 0000 g points of Relay #70 in Panel F.

el
a
&
v
=]

[g |_.I

T
GFIIAE GEO0
S
333

(11

At 3:45pm Grace Murray Hopper ex-
tracted it and taped it into the log book
with the comment “First actual case of
bug being found”.

@at\ *70 ?qr\-z_‘ F
Uhn'ﬁn}.ln i've.'l,qu,'~

Ll In fact the term bug to mean a snag or
et o of bug beiny founk defect was used by Edison as early as
1878.

o -

Why Computers Go Wrong — Joe Hurd — p.2/1.

TheFirst Software Bug

This is the EDSAC I, the first computer with a
stored program.

It became operational on 6 May 1949, printing
a table of square numbers. On 7 May 1949 the
log entry reads

Machine still operating, - table of

squares several times. Table of primes at-

tempted - programme incorrect.

Maurice Wilkes recalls the experience of de-
bugging a program in June 1949:

[T]he realization came over me with
full force that a good part of the remainder
of my life was going to be spent in finding

errors in my own programs.

-

Why Computers Go Wrong — Joe Hurd — p.3/1.

Big Software Bugs

In 1996, the $2B Ariane 5 rocket exploded onT
its maiden flight because there wasn’t enough
room to store a 64 bit number in a 16 bit
buffer. This caused the Inertial Reference Sys-

tem to crash and output a test pattern, which

the rocket controller interpreted as real flight
data. The rocket changing direction caused it

to disintegrate, which in turn triggered the self
destruct mechanism.

" Between 1985 and 1987 several installations
j| power swildh of the Therac 25 linear accelerator, a radiation

Therapy room
infercom

v machine to treat cancer, caused the deaths of
at least 2 people and injured several more. A
particular combination of operator key presses

Printer 33 caused the patient to be blasted with X-rays

— Door Raom at 125 times the recommended dose for their

Display Motion enable Beam on/off light interlock emergency

tarminal switch (footswitch) switeh switches "
condition.

Why Computers Go Wrong — Joe Hurd — p.4/1.

Room

emergency

switch
ey

Turntable

position RS

monitor —_ SN
T

Control
console

™
moniter

What are Bugs?

o .

e Bugs are deviations in behaviour from a specification.

e Hard problem: What are programs supposed to do?

The Therac 25 software was supposed to blast
people with radiation (just not as much as it did).

What is a word processor supposed to do?
What about ambiguities in English?

e Easier: What are programs not supposed to do?
Crash the computer.
Interfere with other programs.
Corrupt data.

o -

Why Computers Go Wrong — Joe Hurd — p.5/1.

Debugging Successes
-

e Memory protection
Prevents programs interfering with each other.

e High level languages
Prevents data corruption and crashes.

e Types
Detect nonsense operations such as “a” + 1.
Prevents data corruption.

e What else can be done to help prevent programmers
from inserting bugs into programs?

e \Warning: In his book The Mythical Man Month, Brooks
claims that there will be “no silver bullet”.

o -

Why Computers Go Wrong — Joe Hurd — p.6/1.

-

Testing
-

e Q: Why don’t programmers simply test their programs?
A: They do!
Testing Is an effective technique for finding bugs that
appear frequently.

e If you have a bug in your software that crashes the

computer every 1,000,000 hours on average, then:

you need 1,000,000 hours of testing to spot the bug;
but every day it will crash one of your 50,000 users.

e Another problem: how to know when to stop testing?

“Program testing can be used to show the presence
of bugs, but never to show their absence!” [Dijkstra]

-

Why Computers Go Wrong — Joe Hurd — p.7/1.

Static Analysis
B o

e Consider the following buggy procedure for squaring a
number:

1. Let s be the input number.
2. If 115 1000 then set r to be 17, else set r to be 7 x 1.
3. Return r as the answer.

e Testing is going to have a hard time finding this bug.
But it's obvious from looking at the program.
e Static analysis finds bugs by examining the program
before it is executed.
It's doesn’t replace testing, it's complementary.
It tends to find different kinds of bugs.

o -

Why Computers Go Wrong — Joe Hurd — p.8/1.

Proving Programs Correct

=

e Programs and specifications are both formal objects, so
no philosophical objections.

Warning: it's a different matter if you run the program
on a real computer :-)

-

e Idea! Prove programs are correct [Turing, 1949]

e Bonus: There are no ambiguities in a logic specification.
e Bonus: Completing the proof guarantees correctness.

e EXxpensive, but starting to be commercially viable.

Intel now proves floating point operations correct to
avoid another $1B Pentium bug.

Microsoft uses SLAM to check all device drivers.

o -

Why Computers Go Wrong — Joe Hurd — p.9/1.

Probabilistic Programs

LA dice throw generator [Knuth 1976].

Probabilistic Programs
B o

e How to test a dice throw generator?
52,3,1,2,1,1,2,5,3,5,4,2,3,1,6,5,4,2,3,1 — OK?
1,12,1,1,1,1,1,2,24,14,2,1,1,1,1,1,1,1,1,1,1 — OK?

Would it perturb you If a coin came up heads 85
times in a row? [Rosencrantz & Guildenstern]

e In my research | prove the correctness of probabillistic
programs:

F Vn.1<n<6 = P{s|dices=n}=3

o -

Why Computers Go Wrong — Joe Hurd — p.11/1.

Conclusions

-

e People will continue to demand highly complex software
that inevitably contain bugs.

Perhaps even buggy software to automate a task is
better than doing the task manually (or not at all)?
e New verification techniques to keep a lid on this
complexity is a grand challenge of computer science.
And will allow programmers to write even more
complex software with new kinds of bugs :-)

e Logic is too useful to be left to theoreticians.

-

Why Computers Go Wrong — Joe Hurd — p.12/1.

	The First Actual Bug
	The First Software Bug
	Big Software Bugs
	What are Bugs?
	Debugging Successes
	Testing
	Static Analysis
	Proving Programs Correct
	Probabilistic Programs
	Probabilistic Programs
	Conclusions

