
Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified Elliptic Curve Cryptography

Joe Hurd

Computing Laboratory
University of Oxford

ACAC Seminar
Macquarie University

Friday 19 January 2007

Joe Hurd Formally Verified Elliptic Curve Cryptography 1 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Talk Plan

1 Introduction

2 Elliptic Curve Cryptography

3 Formalized Elliptic Curves

4 (Towards) Verified Implementations

5 Summary

Joe Hurd Formally Verified Elliptic Curve Cryptography 2 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Critical application, so need to go beyond bug finding to
assurance of correctness.

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

Joint project between Cambridge University and the University
of Utah, managed by Mike Gordon.

Joe Hurd Formally Verified Elliptic Curve Cryptography 4 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code

Joe Hurd Formally Verified Elliptic Curve Cryptography 5 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Verification Flow

A formal specification of elliptic curve operations derived from
mathematics (Hurd, Cambridge). This talk!

A verifying compiler from higher order logic functions to a low
level assembly language (Slind & Li, Utah).

A verifying back-end targeting ARM assembly programs
(Tuerk, Cambridge).

An assertion language for ARM assembly programs
(Myreen, Cambridge).

A very high fidelity model of the ARM instruction set derived
from a processor model (Fox, Cambridge).

The whole verification takes place in the HOL4 theorem prover.

Joe Hurd Formally Verified Elliptic Curve Cryptography 6 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The HOL4 Theorem Prover

Developed by Mike Gordon’s Hardware Verification Group in
Cambridge, first release was HOL88.

Latest release called HOL4, developed jointly by Cambridge,
Utah and ANU.

Implements classical Higher Order Logic (a.k.a. simple type
theory).

Sprung from the Edinburgh LCF project, so has a small logical
kernel to ensure soundness.

Joe Hurd Formally Verified Elliptic Curve Cryptography 7 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Assumptions and Guarantees

Assumptions that must be checked by humans:

Specification: The formalized theory of elliptic curve
cryptography is faithful to standard mathematics. This talk!
Model: The formalized ARM machine code is faithful to the
real world execution environment.

Guarantee provided by formal methods:

The resultant block of ARM machine code faithfully
implements an elliptic curve cryptographic algorithm.
Functional correctness + a security guarantee.

Of course, there is also an implicit assumption that the HOL4
theorem prover is working correctly.

Joe Hurd Formally Verified Elliptic Curve Cryptography 8 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.

Joe Hurd Formally Verified Elliptic Curve Cryptography 10 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Elliptic Curve Cryptography: More Secure?

This table shows equal security key sizes:

standard elliptic curve

1024 bits 173 bits
4096 bits 313 bits

But. . . there has been less theoretical effort made to attack
elliptic curve cryptosystems.

Joe Hurd Formally Verified Elliptic Curve Cryptography 11 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Cryptography Based On Groups

The Discrete Logarithm Problem over a group G tests the
difficulty of inverting the power operation:

Given x , y ∈ G , find a k such that xk = y .

The difficulty of this problem depends on the group G .

For some groups, such as integer addition modulo n, the
problem is easy.

For some groups, such as multiplication modulo a large prime
p (a.k.a. standard public key cryptography), the problem is
difficult.

Warning: the number field sieve can solve this in
sub-exponential time.

Joe Hurd Formally Verified Elliptic Curve Cryptography 12 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Elliptic Curve Cryptography: A Comparison

Standard Public Key Cryptography

Needed: a large prime p and a number g .

Group Operation: multiplication mod p.

Power operation: k 7→ gk mod p.

Elliptic Curve Cryptography

Needed: an elliptic curve E and a point p.

Group Operation: adding points on E .

Power operation: k 7→ p + · · ·+ p (k times).

Joe Hurd Formally Verified Elliptic Curve Cryptography 13 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

ElGamal Encryption (1)

The ElGamal encryption algorithm can use any instance g x = h of
the Discrete Logarithm Problem.

1 Alice obtains a copy of Bob’s public key (g , h).

2 Alice generates a randomly chosen natural number
k ∈ {1, . . . ,]G − 1} and computes a = gk and b = hkm.

3 Alice sends the encrypted message (a, b) to Bob.

4 Bob receives the encrypted message (a, b). To recover the
message m he uses his private key x to compute

ba−x = hkmg−kx = g xk−xkm = m .

Joe Hurd Formally Verified Elliptic Curve Cryptography 14 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

ElGamal Encryption (2)

Formalize the ElGamal encryption packet that Alice sends to Bob:

Constant Definition

elgamal_encrypt G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m)

And the ElGamal decryption operation that Bob performs:

Constant Definition

elgamal_decrypt G x (a,b) =
G.mult (G.inv (group_exp G a x)) b

Note: Encryption follows the textbook algorithm precisely, but
decryption computes a−xb instead of ba−x .

Joe Hurd Formally Verified Elliptic Curve Cryptography 15 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

ElGamal Encryption (3)

Formally verify that ElGamal encryption followed by decryption
reveals the original message, assuming that:

Alice and Bob use the same group; and

the private key that Bob uses correctly pairs with the public
key that Alice uses.

Theorem

` ∀G ∈ Group. ∀g h m ∈ G.carrier. ∀k x.
(h = group_exp G g x) =⇒
(elgamal_decrypt G x

(elgamal_encrypt G g h m k) = m)

Note: The tweak that we made to the ElGamal decryption
operation results in a stronger theorem, since the group G no
longer has to be Abelian.

Joe Hurd Formally Verified Elliptic Curve Cryptography 16 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formalized Elliptic Curves

Formalized theory of elliptic curves mechanized in the HOL4
theorem prover.

Currently about 7500 lines of ML, comprising:

1000 lines of custom proof tools;
6000 lines of definitions and theorems; and
500 lines of example operations.

Complete up to the theorem that elliptic curve arithmetic
forms an Abelian group.

Formalizing this highly abstract theorem will add evidence
that the specification is correct. . .

. . . but is anyway required for functional correctness of elliptic
curve cryptographic operations.

Joe Hurd Formally Verified Elliptic Curve Cryptography 18 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Assurance of the Specification

How can evidence be gathered to check whether the formal
specification of elliptic curve cryptography is correct?

1 Comparing the formalized version to a standard mathematics
textbook.

2 Deducing properties known to be true of elliptic curves.

3 Deriving checkable calculations for example curves.

Will illustrate all three methods.

Joe Hurd Formally Verified Elliptic Curve Cryptography 19 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Source Material

The primary way to demonstrate that the specification of
elliptic curve cryptography is correct is by comparing it to
standard mathematics.

The definitions of elliptic curves, rational points and elliptic
curve arithmetic that we present come from the source
textbook for the formalization (Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel Smart.)

A guiding design goal of the formalization is that it should be
easy for an evaluator to see that the formalized definitions are
a faithful translation of the textbook definitions.

Joe Hurd Formally Verified Elliptic Curve Cryptography 20 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Elliptic Curves

An elliptic curve over the reals is the set of points (x,y)
satisfying an equation of the form

E : y2 = x3 + ax + b .

Despite the name, they don’t look like ellipses!

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

Elliptic curves are used in number theory; Wiles proved
Fermat’s Last Theorem by showing that the elliptic curve

y2 = x(x − an)(x + bn)

generated by a counter-example an + bn = cn cannot exist.

Joe Hurd Formally Verified Elliptic Curve Cryptography 21 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Elliptic Curve y 2 = x3 − x

Joe Hurd Formally Verified Elliptic Curve Cryptography 22 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Elliptic Curve y 2 = x3 − x : Addition

Joe Hurd Formally Verified Elliptic Curve Cryptography 23 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Elliptic Curve y 2 = x3 − x : Negation

Joe Hurd Formally Verified Elliptic Curve Cryptography 24 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Formally Verified Elliptic Curve Cryptography 25 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Negation of Elliptic Curve Points (2)

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

“− P1 = (x1,−y1 − a1x1 − a3)”

Joe Hurd Formally Verified Elliptic Curve Cryptography 26 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Negation of Elliptic Curve Points (3)

The curve case function makes it possible to define functions on
elliptic curve points by separately treating the ‘point at infinity’ O
and the other points (x , y):

Theorem
` ∀e ∈ Curve. ∀z f.

(curve_case e z f (curve_zero e) = z) ∧
∀x y. curve_case e z f (affine e.field [x; y]) = f x y

Joe Hurd Formally Verified Elliptic Curve Cryptography 27 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Negation of Elliptic Curve Points (4)

Negation maps points on the curve to points on the curve.

Theorem

` ∀e ∈ Curve. ∀p ∈ curve_points e.
curve_neg e p ∈ curve_points e

Joe Hurd Formally Verified Elliptic Curve Cryptography 28 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Verified Elliptic Curve Calculations

It is often desirable to derive calculations that provably follow
from the definitions.

Can be used to sanity check the formalization,
or provide a ‘golden’ test vector.

A custom proof tool performs these calculations.

The tool mainly consists of unfolding definitions in the correct
order.
The numerous side conditions are proved with predicate
subtype style reasoning.

Joe Hurd Formally Verified Elliptic Curve Cryptography 29 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Verified Calculations: Elliptic Curves Points

Use an example elliptic curve from a textbook exercise (Koblitz,
1987).

Example
ec = curve (GF 751) 0 0 1 750 0

Prove that the equation defines an elliptic curve and that two
points given in the exercise lie on the curve.

Example
` ec ∈ Curve

` affine (GF 751) [361; 383] ∈ curve_points ec

` affine (GF 751) [241; 605] ∈ curve_points ec

Joe Hurd Formally Verified Elliptic Curve Cryptography 30 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Verified Calculations: Elliptic Curve Arithmetic

Perform some elliptic curve arithmetic calculations and test that
the results are points on the curve.

Example
` curve_neg ec (affine (GF 751) [361; 383]) =

affine (GF 751) [361; 367]

` affine (GF 751) [361; 367] ∈ curve_points ec

` curve_add ec (affine (GF 751) [361; 383])

(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469]

` affine (GF 751) [680; 469] ∈ curve_points ec

` curve_double ec (affine (GF 751) [361; 383]) =

affine (GF 751) [710; 395]

` affine (GF 751) [710; 395] ∈ curve_points ec

Doing this revealed a typo in the formalization of point doubling!

Joe Hurd Formally Verified Elliptic Curve Cryptography 31 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Elliptic Curve Group

The (current) high water mark of the HOL4 formalization of
elliptic curves is the ability to define the elliptic curve group.

Constant Definition
curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |>

To prove that this is an Abelian group ‘merely’ requires showing
that it satisfies all the group axioms plus commutativity.

I nominate the associativity law as a challenge problem for
formalized mathematics.

Joe Hurd Formally Verified Elliptic Curve Cryptography 32 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

HOL Source Code

The first step of compilation is to define an equivalent function in
a subset of HOL:

The only supported types are tuples of words (Fox).

A fixed set of supported word operations.

Functions must be first order and tail recursive.

Constant Definition

add_mod_751 (x : word32, y : word32) =
let z = x + y in
if z < 751 then z else z - 751

Joe Hurd Formally Verified Elliptic Curve Cryptography 34 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Testing In C

Tuerk has created a prototype that emits a set of functions in the
HOL subset as a C library, for testing purposes.

Code

word32 add_mod_751 (word32 x, word32 y) {
word32 z;

z = x + y;

word32 t;

if (z < 751) {
t = z;

} else {
t = z - 751;

}
return t;

}

Joe Hurd Formally Verified Elliptic Curve Cryptography 35 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Hoare Triples for Real Machine Code

Real processors have exceptions, finite memory, and status
flags.

It’s still possible to specify machine code programs using
Hoare triples.

But specifying all the things that don’t change makes them
difficult to read and prove.

Myreen uses the ∗ operator of separation logic to create Hoare
triples that obey the frame rule:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

Joe Hurd Formally Verified Elliptic Curve Cryptography 36 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified ARM Implementation

Using Slind & Li’s compiler with Tuerk’s back-end targeting
Myreen’s Hoare triples for Fox’ ARM machine code:

Theorem

` ∀rv1 rv0.

ARM_PROG

(R 0w rv0 * R 1w rv1 * ~S)

(MAP assemble

[ADD AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

CMP AL 0w (Dp_shift_immediate (LSL 1w) 0w); B LT 3w;

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

SUB AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

B AL 16777215w])

(R 0w (add_mod_751 (rv0,rv1)) * ~R 1w * ~S)

Joe Hurd Formally Verified Elliptic Curve Cryptography 37 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified Netlist Implementation

Iyoda has a verifying hardware compiler that accepts the same
HOL subset as Slind & Li’s compiler.

It generates a formally verified netlist ready to be synthesized:

Theorem
` InfRise clk =⇒

(∃v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10.

DTYPE T (clk,load,v3) ∧ COMB $~ (v3,v2) ∧
COMB (UNCURRY $∧) (v2 <> load,v1) ∧ COMB $~ (v1,done) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v8) ∧ CONSTANT 751w v7 ∧
COMB (UNCURRY $<) (v8 <> v7,v6) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v5) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v10) ∧ CONSTANT 751w v9 ∧
COMB (UNCURRY $-) (v10 <> v9,v4) ∧
COMB (λ(sw,in1,in2). (if sw then in1 else in2))

(v6 <> v5 <> v4,v0) ∧ ∃v. DTYPE v (clk,v0,out)) ==>

DEV add_mod_751

(load at clk,(inp1 <> inp2) at clk,done at clk,out at clk)

Joe Hurd Formally Verified Elliptic Curve Cryptography 38 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Results So Far

So far only initial results—both verifying compilers need
extending to handle full elliptic curve cryptography examples.

The ARM compiler can compile simple 32 bit field operations.

The hardware compiler can compile field operations with any
word length, but with 320 bit numbers the synthesis tool runs
out of FPGA gates.

Joe Hurd Formally Verified Elliptic Curve Cryptography 39 / 41

Introduction Elliptic Curve Cryptography Formalized Elliptic Curves (Towards) Verified Implementations Summary

Summary

This talk has given an overview of an ongoing project to
generate formally verified ARM machine code.

There’s much work still to be done completing and scaling up
all levels of the project, and more cryptographic algorithms to
be included (ECDSA).

The hardware compiler provides another verified
implementation platform, and it would be interesting to
extend the C output to generate reference implementations in
other languages (µCryptol).

Joe Hurd Formally Verified Elliptic Curve Cryptography 41 / 41

	Introduction
	Elliptic Curve Cryptography
	Formalized Elliptic Curves
	(Towards) Verified Implementations
	Summary

