
Introduction Theory Packages Verified Software Summary

Theory Engineering:
Proving in the Large

Joe Hurd

Galois, Inc.
joe@galois.com

ITP Workshop
Monday 24 August 2009

Joe Hurd Theory Engineering: Proving in the Large 1 / 17



Introduction Theory Packages Verified Software Summary

Talk Plan

1 Introduction

2 Theory Packages

3 Verified Software

4 Summary

Joe Hurd Theory Engineering: Proving in the Large 2 / 17



Introduction Theory Packages Verified Software Summary

Motivation

Interactive theorem proving is growing up.

It has moved beyond toy examples of mathematics and
program verification.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The CompCert project used the Coq theorem prover to verify
an optimizing compiler from a large subset of C to PowerPC
assembly code.

There is a need for theory engineering techniques to support
these major verification efforts.

Theory engineering is to proving as software engineering is to
programming. “Proving in the large.”

Joe Hurd Theory Engineering: Proving in the Large 4 / 17



Introduction Theory Packages Verified Software Summary

Software Engineering for Theories

An incomplete list of software engineering techniques applicable to
the world of theories:

Standards: Programming languages, basis libraries.

Abstraction: Module systems to manage the namespace and
promote reuse.

Multi-Language: Tight/efficient (e.g., FFIs) to loose/flexible
(e.g., SOAs).

Distribution: Package repos with dependency tracking and
automatic installation.

Joe Hurd Theory Engineering: Proving in the Large 5 / 17



Introduction Theory Packages Verified Software Summary

The OpenTheory Project

The OpenTheory project aims to apply software engineering
principles to theories of higher order logic.1

The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner polymorphism.

The logic implemented by HOL4, HOL Light and ProofPower.

By focusing on a concrete case study we aim to investigate
the issues surrounding:

Exchanging theories between theorem prover implementations.
Building a common library of higher order logic theories.
Discovering design techniques for theories that compose well.
Installing and upgrading theories while respecting their
dependencies.

1OpenTheory was started in 2004 with Rob Arthan.
Joe Hurd Theory Engineering: Proving in the Large 6 / 17



Introduction Theory Packages Verified Software Summary

OpenTheory Vision

Goal: A distributed package management system for theories.

Includes formalized mathematics (a.k.a. specifications).
Includes verified higher order logic functions.
Includes embeddings of hardware platforms (e.g., ARM) and
programming languages (e.g., C), with verified software.

Central Problem: Managing theory dependencies, to
support:

Installing theories on top of native theories.
Authors releasing new versions of theories.
Minimizing obsolete theories.

Take inspiration from successful package management
systems (e.g., apt-get, cabal, Nix).

Joe Hurd Theory Engineering: Proving in the Large 8 / 17



Introduction Theory Packages Verified Software Summary

Theory Dependencies

A theory of higher order logic consists of:
1 An import list of theorems Γ that the theory requires.
2 An export list of theorems ∆ that the theory provides.
3 A formal proof Γ ` ∆ that the theorems in ∆ logically derive

from the theorems in Γ.

By binding the type operators and constants in Γ, theories
behave like ML functors.

This naturally supports installing theories on top of native
theories.
Also supports a limited form of theory interpretation.

There is a theory engineering challenge to design theories that
can be applied in many contexts.

Joe Hurd Theory Engineering: Proving in the Large 9 / 17



Introduction Theory Packages Verified Software Summary

Theory Installation

The Theory Installation Problem: Given a set of available
theorems Θ, find a binding σ for a theory Γ ` ∆ such that
Γσ ⊆ Θ.

After Installation: The new set of available theorems is
Θ ∪∆σ.

It may be impossible to install a theory, but possible if some
other theories are installed first.

Modern package managers typically offer a simple interface to
such recursive installation:

opentheory install complex-analysis

Joe Hurd Theory Engineering: Proving in the Large 10 / 17



Introduction Theory Packages Verified Software Summary

Theory Upgrade

Offer theory developers the capability to mark that a theory
package obsoletes others.

Typically used to prefer newer versions of the same theory.
Can also be used to merge parallel theory developments.

Modern package managers typically offer a simple interface to
upgrading all installed packages:

opentheory upgrade all

Can statically check that all the theory dependencies will
match up after an upgrade.

Joe Hurd Theory Engineering: Proving in the Large 11 / 17



Introduction Theory Packages Verified Software Summary

Packaging Verified Software

Using theory packages for verified software addresses many of the
logistical needs:

Distribution: Download software from repos, check the
proofs, and install on your local machine.

Versioning: Developers can release new versions of software,
obsolete packages can be marked.

Upgrade: Can statically guarantee that an upgrade will be
safe, so long as the required properties still hold of the new
version.

Joe Hurd Theory Engineering: Proving in the Large 13 / 17



Introduction Theory Packages Verified Software Summary

Semi-Formal Verification of Software

The expressivity of higher order logic allows it to naturally
span the gap between abstract specifications and executable
higher order functions.

Haskell can efficiently execute higher order functions, and its
purity has led to recent successes on multicore architectures.

Makes sense to implement a Haskell back end for OpenTheory
higher order functions (like Haskabelle for Isabelle).

This is a promising approach to developing correct and
efficient code for future architectures.

Joe Hurd Theory Engineering: Proving in the Large 14 / 17



Introduction Theory Packages Verified Software Summary

High Assurance Software

For the highest level of assurance, verify properties of
embedded programs w.r.t. a formalized semantics of their
hardware platform/programming language.

The formalized platform semantics and program specification
must live in theory packages where upgrades are restricted.

The embedded programs can live in regular theory packages,
where the developer is free to make upgrades that still satisfy
the spec.

Joe Hurd Theory Engineering: Proving in the Large 15 / 17



Introduction Theory Packages Verified Software Summary

Summary

This talk has presented the next steps for the OpenTheory
project, which aims to apply software engineering principles to
theories of higher order logic.

Package management techniques support distribution,
installation and safe upgrade.

Theory packages also support construction of verified software
libraries at different points in the effort/formality trade-off.

The project web page:

http://gilith.com/research/opentheory

Joe Hurd Theory Engineering: Proving in the Large 17 / 17

http://gilith.com/
re
sear
ch/opentheory

	Introduction
	Theory Packages
	Verified Software
	Summary

