
Motivation First Order Logic Proof Techniques Implementation Summary

The Metis Theorem Prover

Joe Hurd

Galois, Inc.
joe@galois.com

Strategic CAD Labs, Intel
Thursday 17 April 2008

Joe Hurd The Metis Theorem Prover 1 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Talk Plan

1 Motivation

2 First Order Logic

3 Proof Techniques

4 Implementation

5 Summary

Joe Hurd The Metis Theorem Prover 2 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

A Familiar Beginning

Code (Reverse.hs)

import Test.QuickCheck(quickCheck)

rev :: [a] -> [a]

rev [] = []

rev (h:t) = rev t ++ [h]

prop :: [Int] -> Bool

prop l = rev (rev l) == l

quickCheck prop

Shell

$ ghc -package QuickCheck -o reverse Reverse.hs

$ ./reverse

OK, passed 100 tests.

Joe Hurd The Metis Theorem Prover 5 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

From Bug-Finding to Assurance

“Program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for showing
their absence” [Dijkstra, The Humble Programmer]

How can we do better?

Formal verification:
1 Model the Haskell program in a logic.
2 Prove that it satisfies the property.
3 Machine check the proof.

Perhaps a library of verified functions could be built this way?

Joe Hurd The Metis Theorem Prover 7 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

A Logic for Haskell Programs

Finding a suitable logic for Haskell programs is a whole other talk.

For the sake of an example, will use Higher Order Logic of
Computable Functions (a.k.a. HOLCF, a.k.a. domain theory).

Axioms

• rev [] = []
• ∀h, t. rev (h : t) = rev t ++ [h]

Goal

∀l . finite l =⇒ rev (rev l) = l

Joe Hurd The Metis Theorem Prover 9 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Automation Hazard: Creative Step Required!

First need to generalize the goal to make it inductively provable:

Goal (Generalized goal)

∀l , k. finite l ∧ finite k =⇒
rev (rev l ++ k) = rev k ++ l

(Instantiate k to [] to recover the original goal.)

Automatic generalization is hard.

To have a reliable QuickCheck-like interface, the programmer
would need to provide generalizations as hints.

Joe Hurd The Metis Theorem Prover 11 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

List Induction Step

Now a standard induction over finite lists can be applied:

Goal (Base case)

∀k. finite k =⇒ rev (rev [] ++ k) = rev k ++ []

Goal (Step case)

∀t. finite t =⇒
(∀k. finite k =⇒ rev (rev t ++ k) = rev k ++ t) =⇒
∀h, k. finite k =⇒ rev (rev (h : t) ++ k) = rev k ++ (h : t)

Joe Hurd The Metis Theorem Prover 13 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Include Relevant Facts

Some extra facts need to be included to prove the goals:

Axioms

• finite []
• ∀h, t. finite (h : t) ⇐⇒ finite t
• ∀l1, l2. finite (l1 ++ l2) ⇐⇒ finite l1 ∧ finite l2

• ∀l . [] ++ l = l
• ∀h, t, l . (h : t) ++ l = h : (t ++ l)
• ∀l . l ++ [] = l
• ∀l1, l2, l3. l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3

These would be previously proved properties in the library.

Joe Hurd The Metis Theorem Prover 15 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Applying Metis

We are now in a position to apply the Metis ‘automatic’ prover:

Shell
$ ./metis rev rev.tptp

---------------------------------------------------------------------------

Problem: rev rev.tptp

Goal:

finite [] ∧ (!H T. finite (H : T) <=> finite T) ∧
(!L1 L2. finite (L1 ++ L2) <=> finite L1 ∧ finite L2) ∧
(!L. [] ++ L = L) ∧ (!H T L. (H : T) ++ L = H : T ++ L) ∧
rev [] = [] ∧ (!H T. rev (H : T) = rev T ++ H : []) ∧
(!L. L ++ [] = L) ∧ (!L1 L2 L3. L1 ++ L2 ++ L3 = (L1 ++ L2) ++ L3) ==>

(!K. finite K ==> rev (rev [] ++ K) = rev K ++ []) ∧
!T.

finite T ==> (!K. finite K ==> rev (rev T ++ K) = rev K ++ T) ==>

!H K. finite K ==> rev (rev (H : T) ++ K) = rev K ++ H : T

Size: 19 clauses, 34 literals, 149 symbols, 149 typed symbols.

Category: non-propositional, equality, non-horn.

SZS status Theorem for rev rev.tptp

Joe Hurd The Metis Theorem Prover 17 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Term Syntax

Here is the BNF for the terms of first order logic:

Term ← Var
| f (Term1, . . . ,Termm)

Terms with no variables are called ground terms.

Joe Hurd The Metis Theorem Prover 20 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Formula Syntax

And now the formulas:

Formula ← True
| False
| p(Term1, . . . ,Termn) /* atoms */
| ¬Formula
| Formula ∧ Formula
| Formula ∨ Formula
| Formula =⇒ Formula
| Formula ⇐⇒ Formula
| ∀Var. Formula
| ∃Var. Formula

As usual, a closed formula is one with no free variables.

Joe Hurd The Metis Theorem Prover 22 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Signatures and Interpretations

A first order signature is a set of possible function f /m and
predicate p/n symbols (together with their arity).

An interpretation of a signature is a pair (D, I ).

D is any non-empty set, called the domain of elements.
I maps the functions and predicate symbols in the signature to
domain functions and predicates:

I (f /m) : Dm → D I (p/n) : Dn → B

Special case: First order logic with equality always interprets
the equality predicate symbol (=/2) to be the equality
relation on the domain.

Joe Hurd The Metis Theorem Prover 24 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Semantics

Given a fixed interpretation, every (closed) formula either
evaluates to true or false.

An interpretation that makes a formula true is called a model.

A formula with no models is called unsatisfiable.
A formula with some models is called satisfiable.
If every interpretation is a model, the formula is called a
tautology.

In verification we normally have a correctness formula that
we’d like to prove is a tautology.

Joe Hurd The Metis Theorem Prover 26 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

The Bad News: Undecidability

There is no algorithm to decide whether a first order logic formula
is a tautology:

(∀x , y . ((k . x) . y)→ x) ∧
(∀x , y , z . (((s . x) . y) . z)→ (x . z) . (y . z)) ∧
(∀x , x ′, y . x → x ′ =⇒ (x . y)→ (x ′ . y)) ∧
(∀x , y , y ′. y → y ′ =⇒ (x . y)→ (x . y ′)) ∧
(∀x . (¬∃y . x → y) =⇒ terminating x) ∧
(∀x , y . x → y ∧ terminating y =⇒ terminating x)
=⇒
terminating (big s and k expression)

The slightly better news: The problem is semi-decidable.

Joe Hurd The Metis Theorem Prover 28 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Metis Overview

Metis uses the following program to compute whether a closed
formula F is a tautology:

1 Convert ¬F to an equi-satisfiable set of clauses.
2 Deduce more clauses from the current set until one of the

following conditions is met:

If the empty clause (i.e., False) is ever deduced, then ¬F is
unsatisfiable. Report that F is a tautology and terminate.
If no new clauses can be deduced, then ¬F is satisfiable.
Report that F is not a tautology and terminate.

Because the problem is semi-decidable, we know there are
non-tautologies that will cause the program to loop forever.

Joe Hurd The Metis Theorem Prover 30 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Normalization to Clauses

A clause is a disjunction of literals: L1 ∨ · · · ∨ Ln.

A literal is either an atom or a negation of an atom.

How to convert an an arbitrary formula to an equi-satisfiable
set of clauses?

1 Convert all logical operations to ¬, ∨ and ∧.
2 Push the ¬ operations to the leaves.
3 Lift the ∃ and ∀ quantifiers to the top.
4 Push the ∨ operations beneath the ∧.
5 Introduce Skolem constants to eliminate the ∃ quantifiers.
6 Drop the ∀ quantifiers and ∧ operations.

Introducing formula definitions avoids exponential blow-up in
Steps 1 and 4.

Joe Hurd The Metis Theorem Prover 31 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Search Space

The search space is all the possible clauses that can be
deduced.

However, it is not necessary to deduce all clauses, just enough
to generate a proof (if there is one).

Example: It is never useful to keep tautologous clauses

L ∨ ¬L ∨ C

Warning: It is valid for a search space reduction strategy to
eliminate all short proofs, so long as one proof is still
reachable.

Joe Hurd The Metis Theorem Prover 32 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Knuth-Bendix Term Ordering

Term orderings are commonly used to reduce the search space.

A term ordering � is a well-founded total order on ground
terms, such that if s � t then t is not a strict subterm of s.

Note: If s or t contain variables, there might be grounding
instantiations σ1 and σ2 with

sσ1 � tσ1 tσ2 � sσ2

Metis uses the Knuth-Bendix term ordering, which essentially
just counts the number of symbols in the term.

Joe Hurd The Metis Theorem Prover 33 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Ordered Resolution

In the beginning there was enumeration of terms. In 1965
Robinson introduced the resolution rule, which uses unification to
combine clauses.

Inference Rule (Resolution)

C ∨ A D ∨ ¬B

Cσ ∨ Dσ

where

1 σ = mgu(A,B).

2 Lσ � Aσ is satisfiable for every literal L in C ∪ D.

Joe Hurd The Metis Theorem Prover 34 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Ordered Factoring

Resolution is not complete without factoring.

Inference Rule (Factoring)

C ∨ A ∨ B

Cσ ∨ Aσ

where

1 σ = mgu(A,B).

2 Lσ � Aσ is satisfiable for every literal L in C.

Joe Hurd The Metis Theorem Prover 35 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Ordered Paramodulation

There is a special rule for equality.

Inference Rule (Paramodulation)

C ∨ s = t D ∨ A

Cσ ∨ Dσ ∨ A[t]pσ

where

1 A|p is not a variable.

2 σ = mgu(s,A|p).
3 sσ 6= tσ.

4 tσ � sσ is satisfiable.

5 Lσ � (s = t)σ is satisfiable for every literal L in C.

6 Lσ � Aσ is satisfiable for every literal L in D.

Joe Hurd The Metis Theorem Prover 36 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Simplification

A big advantage of using a term ordering is that we can simplify
clauses and completely throw away the original.

Inference Rule (Simplification)

C ∪ {s = t} ∪ {C ∨ A}
C ∪ {s = t} ∪ {C ∨ A[tσ]p}

where

1 σ is the result of matching s to A|p.
2 sσ 6= tσ.

3 tσ � sσ is valid.

Example: ∀x . x + 0 = x will always be used to simplify clauses.

Joe Hurd The Metis Theorem Prover 37 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Main Loop

Maintain an active and passive set of clauses.

Initialize the active set to be empty, and the passive set to
contain the initial clauses.

On every iteration of the main loop:

1 Take one clause out of the passive set.
2 Add a copy of the clause to the active set.
3 Rename the clause with fresh variables.
4 Combine the clause with every clause in the active set.
5 Simplify and factor all the newly deduced clauses, and add

them to the passive set.

Invariant: All pairs of clauses in the active set have been
combined.

Joe Hurd The Metis Theorem Prover 38 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Completeness

Metis implements a complete search strategy, meaning that in
principle it will find a proof for every tautology.

It is reasonable to ask why it bothers, since in practice it will
fail to find many proofs.

1 When deployed in an interactive prover, it is annoying to users
if a tactic cannot prove an easy goal.

2 Metis can attempt to discover non-tautologies, because if it
fails to find a proof then the formula is definitely not a
tautology.

Joe Hurd The Metis Theorem Prover 39 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Indexing

The main loop consists of combining one clause with a set of
clauses.

The active set maintains literal and term indexes to quickly
locate all necessary unifications and matches.

Indexing makes a big difference to performance.

Metis implements discrimination trees.
Vampire implements code trees.

Joe Hurd The Metis Theorem Prover 41 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Picking Passive Clauses

Probably the important heuristic in a prover like Metis is
deciding the order in which to pick clauses out of the passive
set.

Metis weights clauses when they are added to the passive set,
and picks the lightest clause on every iteration.

Clauses are given a heavier weight:

The later they are deduced.
The greater the number of literals they contain.
The greater the number of symbols they contain.

Joe Hurd The Metis Theorem Prover 43 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Logical Kernel

Metis implements an LCF-style logical kernel.

All the rules in the logical calculus for inferring clauses are
expanded into combinations of 6 primitive inference rules.

For example, the primitive inference rule for axioms:

C
axiom C

This simplifies any kind of proof processing, because only the
the primitive inferences rules need to be handled.

For example, this is used when translating first order
refutations to higher order logic proofs.

Joe Hurd The Metis Theorem Prover 45 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Logical Kernel: Resolution

Excluded Middle:

L ∨ ¬L
assume L

Substitution:
C

C [σ]
subst σ

Resolution:
L ∨ C ¬L ∨ D

C ∨ D
resolve L

where the literal L must occur in the first theorem, and the
literal ¬L must occur in the second theorem.

Joe Hurd The Metis Theorem Prover 47 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Logical Kernel: Equality

Reflexivity:

t = t
refl t

Equality:

s 6= t ∨ ¬L ∨ L′ equality L ρ t

where s is the subterm of L at path ρ, and L′ is L with the
subterm at path ρ being replaced by t.

Joe Hurd The Metis Theorem Prover 49 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Semantic Guidance

Following work by John Slaney, I am currently investigating
using semantic properties of clauses to weight them.

Given an interpretation with a finite domain, clauses can be
evaluated as true or false.

Clauses that are true in the interpretation are less likely to be
helpful in generating an empty clause (combining two true
clauses must generate another true clause).

The main difficulty is finding a good interpretation to guide
the proof search.

So far one negative result: random interpretations don’t help!

Joe Hurd The Metis Theorem Prover 51 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Metis: The Tool

Written in Standard ML in a ‘purely-functional style’.

No destructive rewriting here.
Designed to emphasize clarity over performance.
11,000 lines of code (+ 2,500 comment + 3,500 blank).
For best results use the MLton whole-program compiler.

Available for download.

http://www.gilith.com/software/metis
GPL licence: hack at will, patches gratefully received.

Joe Hurd The Metis Theorem Prover 53 / 63

http://www.gilith.com/software/metis


Motivation First Order Logic Proof Techniques Implementation Summary

Strengths

The clear implementation allows Metis to be easily modded to
add new kinds of automated reasoning.

Metis reads problems in TPTP format and outputs proofs in
TSTP format, so can be easily hooked up to other tools.

Metis proofs are easily checkable, consisting of many tiny
inference steps.

The rev rev proof has 86 steps!
This is a result of its LCF-style logical kernel.

Joe Hurd The Metis Theorem Prover 55 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Weaknesses

The more general the logic, the worse the automation.

SAT < SMT < First Order < Higher Order < ZFC

Metis tends to be chaotic: small changes to the input can
affect whether a proof is found.

Good for speculative background proving or easy proofs.

Metis is not the most powerful first order prover on the
market.

Joe Hurd The Metis Theorem Prover 57 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

TPTP and CASC

TPTP = Thousands of Problems for Theorem Provers.

CASC = CADE Automated System Competition.

Metis made its debut at CASC in 2007.

It placed 10 out of 13 provers in the FOF (First Order
Formula) division, proving 117 out of 300 problems (the
winner, Vampire 9.0, proved 270 problems).

Unexpected result: It solved 28 problems just in its
normalization to clauses!

Joe Hurd The Metis Theorem Prover 59 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Deployments

Metis is used as a proof engine in the HOL interactive
theorem prover. The METIS TAC tactic handles the
conversion between higher order logic and first order logic.

Larry Paulson has made good use of Metis’ ability to generate
explicit proofs in the Isabelle sledgehammer tactic, which
attempts to prove your goals in a background process.

Larry Paulson has a separate project hacking Metis to use it
as an inference engine to solve problems in real closed fields.

Geoff Sutcliffe is making use of Metis’ explicit proofs and
compliance to standards to extract information from proofs.

Joe Hurd The Metis Theorem Prover 61 / 63



Motivation First Order Logic Proof Techniques Implementation Summary

Summary

This talk has presented the Metis first order prover.

The 40+ years of work on first order provers have generated
quite a bit of background theory.

And yet despite this, some interesting research problems still
remain to make them more robust and powerful.

Joe Hurd The Metis Theorem Prover 63 / 63


	Motivation
	First Order Logic
	Proof Techniques
	Implementation
	Summary

