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Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

The following elements are now in place:

A formal specification of elliptic curve operations derived from
mathematics (Hurd, Cambridge). This talk!
A compiler from higher order logic functions to a low level
assembly language (Slind, Utah).
A very high fidelity model of the ARM instruction set derived
from a processor model (Fox, Cambridge).
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Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code
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Assumptions and Guarantees

Assumptions that must be checked by humans:

Specification: The formalized theory of elliptic curve
cryptography is faithful to standard mathematics. This talk!
Model: The formalized ARM machine code is faithful to the
real world execution environment.

Guarantee provided by formal methods:

The resultant block of ARM machine code faithfully
implements an elliptic curve cryptographic algorithm.
Functional correctness + a security guarantee.

Of course, there is also an implicit assumption that the HOL4
theorem prover is working correctly.
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Assurance of the Specification

How can evidence be gathered to check whether the formal
specification of elliptic curve cryptography is correct?

1 Comparing the formalized version to a standard mathematics
textbook.

2 Deducing properties known to be true of elliptic curves.

3 Deriving checkable calculations for example curves.

This talk will illustrate all three methods.
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Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.
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Elliptic Curve Cryptography: More Secure?

This table shows equal security key sizes:

standard elliptic curve

1024 bits 173 bits
4096 bits 313 bits

But. . . there has been less theoretical effort made to attack
elliptic curve cryptosystems.

Joe Hurd, Mike Gordon and Anthony Fox Formalized Elliptic Curve Cryptography 12 / 36



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Formalized Cryptography Summary

Elliptic Curve Cryptography: A Comparison

Standard Public Key Cryptography

Needed: a large prime p and a number g .

Operation: multiplication mod p.

One-way operation: k 7→ gk mod p.

Elliptic Curve Cryptography

Needed: an elliptic curve E and a point p.

Operation: adding points on E .

One-way operation: k 7→ p + · · ·+ p (k times).
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Formalization in HOL4

Formalized theory of elliptic curves mechanized in the HOL4
theorem prover.

Currently about 4500 lines of ML, comprising:

3500 lines of definitions and theorems; and
1000 lines of custom proof tools.

Complete up to the theorem that elliptic curve arithmetic
forms an Abelian group.

Formalizing this highly abstract theorem will add evidence
that the specification is correct. . .

. . . but is anyway required for the formal verification of elliptic
curve cryptographic operations.
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Source Material

The primary way to demonstrate that the specification of
elliptic curve cryptography is correct is by comparing it to
standard mathematics.

The definitions of elliptic curves, rational points and elliptic
curve arithmetic that we present come from the source
textbook for the formalization (Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel Smart.)

A guiding design goal of the formalization is that it should be
easy for an evaluator to see that the formalized definitions are
a faithful translation of the textbook definitions.
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Elliptic Curves

An elliptic curve over the reals is the set of points (x,y)
satisfying an equation of the form

E : y2 = x3 + ax + b .

Despite the name, they don’t look like ellipses!

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

Elliptic curves are used in number theory; Wiles proved
Fermat’s Last Theorem by showing that the elliptic curve

y2 = x(x − an)(x + bn)

generated by a counter-example an + bn = cn cannot exist.
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The Elliptic Curve y 2 = x3 − x
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The Elliptic Curve y 2 = x3 − x : Addition
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The Elliptic Curve y 2 = x3 − x : Negation
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Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”
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Negation of Elliptic Curve Points (2)

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

“− P1 = (x1,−y1 − a1x1 − a3)”
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Negation of Elliptic Curve Points (3)

The curve case function makes it possible to define functions on
elliptic curve points by separately treating the ‘point at infinity’ O
and the other points (x , y):

Theorem
` ∀e ∈ Curve. ∀z f.

(curve_case e z f (curve_zero e) = z) ∧
∀x y. curve_case e z f (affine e.field [x; y]) = f x y
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Negation of Elliptic Curve Points (4)

Negation maps points on the curve to points on the curve.

Theorem

` ∀e ∈ Curve. ∀p ∈ curve_points e.
curve_neg e p ∈ curve_points e
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Verified Elliptic Curve Calculations

It is often desirable to derive calculations that provably follow
from the definitions.

Can be used to sanity check the formalization,
or provide a ‘golden’ test vector.

A custom proof tool performs these calculations.

The tool mainly consists of unfolding definitions in the correct
order.
The numerous side conditions are proved with predicate
subtype style reasoning.
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Verified Calculations: Elliptic Curves Points

Use an example elliptic curve from a textbook exercise (Koblitz,
1987).

Example
ec = curve (GF 751) 0 0 1 750 0

Prove that the equation defines an elliptic curve and that two
points given in the exercise lie on the curve.

Example
` ec ∈ Curve

` affine (GF 751) [361; 383] ∈ curve_points ec

` affine (GF 751) [241; 605] ∈ curve_points ec
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Verified Calculations: Elliptic Curve Arithmetic

Perform some elliptic curve arithmetic calculations and test that
the results are points on the curve.

Example
` curve_neg ec (affine (GF 751) [361; 383]) =

affine (GF 751) [361; 367]

` affine (GF 751) [361; 367] ∈ curve_points ec

` curve_add ec (affine (GF 751) [361; 383])

(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469]

` affine (GF 751) [680; 469] ∈ curve_points ec

` curve_double ec (affine (GF 751) [361; 383]) =

affine (GF 751) [710; 395]

` affine (GF 751) [710; 395] ∈ curve_points ec

Doing this revealed a typo in the formalization of point doubling!
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The Elliptic Curve Group

The (current) high water mark of the HOL4 formalization of
elliptic curves is the ability to define the elliptic curve group.

Constant Definition
curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |>
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Cryptography Based On Groups

Many cryptographic algorithms make use of the Discrete
Logarithm Problem over a group G :

Given x , y ∈ G , find a k such that xk = y .

The difficulty of this problem depends on the group G .

For some groups, such as integer addition modulo n, the
problem is easy.

For some groups, such as multiplication modulo a large prime
p, the problem is difficult.

Warning: the number field sieve can solve this in
sub-exponential time.
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ElGamal Encryption (1)

The ElGamal encryption algorithm uses an instance g x = h of the
Discrete Logarithm Problem.

1 Alice obtains a copy of Bob’s public key (g , h).

2 Alice generates a randomly chosen natural number
k ∈ {1, . . . , ]G − 1} and computes a = gk and b = hkm.

3 Alice sends the encrypted message (a, b) to Bob.

4 Bob receives the encrypted message (a, b). To recover the
message m he uses his private key x to compute

ba−x = hkmg−kx = g xk−xkm = m .
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ElGamal Encryption (2)

Formalize the ElGamal encryption packet that Alice sends to Bob.

Constant Definition

elgamal G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m)

This follows the algorithm precisely.
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ElGamal Encryption (3)

Prove the theorem that Bob can decrypt the ElGamal encryption
packet to reveal the message (assuming he knows his private key).

Theorem

` ∀G ∈ Group. ∀g h m ∈ G.carrier. ∀k x.
(h = group_exp G g x) =⇒
(let (a,b) = elgamal G g h m k in
G.mult (G.inv (group_exp G a x)) b = m)

This diverges slightly from the textbook algorithm by having Bob
compute a−xb instead of ba−x , but results in a stronger theorem
since the group G does not have to be Abelian.

Joe Hurd, Mike Gordon and Anthony Fox Formalized Elliptic Curve Cryptography 33 / 36



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Formalized Cryptography Summary

Joe Hurd, Mike Gordon and Anthony Fox Formalized Elliptic Curve Cryptography 34 / 36



Assurance Overview Elliptic Curve Cryptography Formalized Elliptic Curves Formalized Cryptography Summary

Summary

This talk has described three techniques to validate a theory
of elliptic curve cryptography mechanized in the HOL4
theorem prover.

Assurance is needed: the formalized theory will be used to
write specifications for verifying ARM implementations of
elliptic curve cryptography.

In future could be ‘retargeted’ to verify Cryptol programs or
generate verified test vectors for use outside the theorem
prover.
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