
Introduction Binary Search Trees Balancing Strategies Summary

Treaps
A Purely Functional Finite Map Data Structure

Joe Hurd

Galois, Inc.
joe@gilith.com

Galois Dev Discussion
Thursday 30 September 2010

Joe Hurd Treaps 1 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Purely Functional Data Structures

Purely functional data structures support two operations:
1 Creating a new object and initializing the data.
2 Reading the data of an object.

Unsupported: Mutating the data in an object.

Simulate mutation by creating a new object that reuses the
structure of the old object.

Drawbacks:

Allocation instead of mutation worse performance.

Benefits:

Easy to reason about aggressive compiler optimizations.
No thread mutation no concurrency race conditions.

Joe Hurd Treaps 2 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Heaps

A purely functional data structure for

finite sets.

Each node is either a branch or a
leaf.

A leaf is empty.

A branch contains a key, a left
subtree and a right subtree.

The branch key must be greater
than all the keys in its subtrees.

Supports efficient access to the maxi-

mum element.

11

7 2

35

Joe Hurd Treaps 3 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Binary Search Trees

Another purely functional data struc-

ture for finite sets.

Each node is either a branch or a
leaf.

A leaf is empty.

A branch contains a key, a left
subtree and a right subtree.

The branch key must be greater
than all the keys in the left subtree.

The branch key must be less than
all the keys in the right subtree.

Supports efficient searching for ele-

ments.

O

E U

IA

Joe Hurd Treaps 4 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Operating on Binary Search Trees

Must maintain the binary search
tree invariants when implementing
set operations:

adding/deleting elements

union

intersection

set difference

O

E U

IA Y

Joe Hurd Treaps 5 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Unbalanced Binary Search Trees are Inefficient

O

E

U

I

A

−→
O

E

U

I

A

Y

Joe Hurd Treaps 6 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Balancing Strategies

In a Nutshell: Perform additional tree rotations to avoid
losing balance.

AVL trees [1962]
Red/black trees [1972]
Splay trees [1985]

But wait! Most binary search trees are well-balanced.

Idea: Given a set of keys, choose a binary search tree
containing these keys at random.
This will result in good expected performance, independent of
the input.

Joe Hurd Treaps 7 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Implementing Random Binary Search Trees

Given a set of keys with
associated priorities, there is
a unique binary search tree
containing these keys that is
also a heap of the priorities.

Assigning priorities to keys
uniformly at random will
result in a random binary
search tree.

This hybrid of a tree and a
heap is called a treap
[Cecilia R. Aragon and
Raimund Seidel, 1989].

O

E U

IA

O:11

E:7 U:2

I:3A:5

Joe Hurd Treaps 8 / 9

Introduction Binary Search Trees Balancing Strategies Summary

Summary

Random binary search trees are used to support heavy use of
finite sets and maps in formal methods infrastructure.

1 The Metis theorem prover.
2 The OpenTheory proof archive.

I’d like to know how their performance compares with other
purely functional data structures for finite sets and maps.

Looking for volunteers to carry out experiments. . .

The Standard ML code is available under an MIT license from

http://src.gilith.com/basic.html

Joe Hurd Treaps 9 / 9

http://src.gilith.com/basic.html

	Introduction
	Binary Search Trees
	Balancing Strategies
	Summary

