Joe Hurd

OpenTheory
Package Management for Higher Order Logic Theories

Joe Hurd

Galois, Inc.
joe@galois.com

Galois Tech Seminar
Tuesday 13 January 2009

OpenTheory

galois

1/

Talk Plan

@ Proof Articles
© HOL Light Case Study
© Theory Engineering

@ Grand Vision

Joe Hurd OpenTheory 2 /45

@ Interactive theorem proving is growing up.
@ It has moved beyond toy examples of mathematics and
program verification.

o The FlySpeck project is driving the hol light theorem prover
towards a formal proof of the Kepler sphere-packing
conjecture.

o The CompCert project used the Coq theorem prover to verify
an optimizing compiler from a large subset of C to PowerPC
assembly code.

@ There is a need for theory engineering techniques to support
these major verification efforts.

galois

Joe Hurd OpenTheory 3/45

Theory Engineering

Joe Hurd

@ Informally, a theory is a set of theorems, together with their
proofs.

@ Think of a theory as a module in a weird programming
language:

module ~ theory example
function type ~ theorem Ft=1t
function definition ~ proof refl t

@ Theory engineering is to proving as software engineering is to
programming. “Proving in the large.”

@ What can software engineering techniques do for us in the
world of theories?

galois

OpenTheory 4 /45

Case Study: Higher Order Logic

There are 3 major interactive theorem provers implementing
exactly the same variant of higher order logic.
e The variant is Church's simple theory of types, extended with
Hindley-Milner polymorphism.

@ The theorem provers are:
e HOL4, developed by Konrad Slind and Michael Norrish;
e HOL Light, developed by John Harrison;
e and ProofPower, developed by Rob Arthan.

Isabelle/HOL is not on the list, because its powerful type class
mechanism is an extension of the logic.

Porting theories between these theorem provers is currently a
painful process of editing scripts that call proof tactics.

galois

Joe Hurd OpenTheory 5 /45

Tactic Proof Scripts

Each higher order logic theorem prover compiles its own tactic
script language into a sequence of primitive logical inferences.

Code (Typical HOL Light tactic script proof)

let NEG_IS_ZERO = prove
(‘!x. neg x = Zero <=> x = Zero‘,
MATCH_MP_TAC N_INDUCT THEN
REWRITE_TAC [neg_def] THEN
MESON_TAC [N_DISTINCT]);;

Difficulty: Each of the theorems provers has a slightly different set
of tactics, the behaviour of which evolves across versions.

galois

Joe Hurd OpenTheory 6 /45

Compiled Theories

Joe Hurd

Idea: Port the compiled inference proof, not the source tactic
script.

Benefit: The logic will never change, so the compiled theories
will never suffer from bit-rot.

e Whereas tactic scripts can break every time the tactics change.
Benefit: The compiled proof need only store the inferences
that contribute to the proof.

o Whereas tactic scripts often explore many dead ends before

finding a valid proof.
Drawback: Once the theory has been compiled to a proof, it is
difficult to change it.

e So theories should be compiled only when they are stable
enough to be archived.

galois

OpenTheory 7 /45

The OpenTheory Project

Joe Hurd

This talk will introduce OpenTheory articles, which are
compiled higher order logic theories.

The OpenTheory project was started by Joe Hurd and Rob
Arthan to exchange theories between higher order logic
theorem provers.

The format of articles is now stable, and the focus of the
project is on design techniques for articles that compose well.

The complete article format can be found at the project web
page:
http://opentheory.gilith.com

galois

OpenTheory 8 /45

http://opentheory.gilith.com

Proof Articles
Theorem Provers in the LCF Design

Higher order logic theorem provers are just functional programs,
where one of the modules is the logical kernel:

Code (The OpenTheory logical kernel)
type thm

(* refl t yields the theorem |- t = t *)
val refl : Term.term -> thm

[...10 other primitive inferences...]

Key ldea: The thm type is abstract, so the only way to create one
is to use the primitive inferences of the logic.

galois

Joe Hurd OpenTheory 10 / 45

Proof Articles
Representing Proofs

Joe Hurd

Not all higher order theorem provers build explicit proof
objects for theorems.

However, every tactic in the theorem prover is a function that
calls lower-level tactics, all the way down to the primitive
inference functions in the logical kernel.

Thus the proof of a theorem in a higher order logic theorem
prover can be represented as a call tree in a functional
programming language.

The OpenTheory article format is a direct representation of
this call tree.

galois

OpenTheory 11 / 45

Proof Articles
Proofs as Stack-Based Programs

@ Articles represent call trees in functional programming
languages as programs in a stack-based language.

@ The theorem prover interprets this stack-based program, and
simulates the primitive inference calls that are described by
the stack-based program.

@ When the theorem prover has finished interpreting the
program, it will have simulated the entire proof of the
theorems exported by the article.

@ The stack-based program representation of proofs is easy to
read, and easy to generate by instrumenting the inference
functions in the theorem prover.

galois

Joe Hurd OpenTheory 12 / 45

Proof Articles

Article Data Objects

Different kinds of data appear in call trees representing proofs, and
these are defined in the article format.

Definition (Article data objects)

datatype object =
Oerror (* An error value *)
| Onum of num (* A number *)
| Oname of name (* A name *)
| Olist of object list (* A list (or tuple) of objects *)
| Otype of hol_type (*x A higher order logic type *)
| Oterm of term (* A higher order logic term *)
| Othm of thm (* A higher order logic theorem *)
| Ocall of name (*x A special object marking a *)
(*x function call *)

V.

galois

Joe Hurd OpenTheory 13 / 45

Proof Articles
Stack Operations

@ Articles are programs in a stack-based language.
@ They are a sequence of commands, one per line.

@ Most commands build up data objects to be used as function
arguments or return values.

Definition (The “var” article command)
var

Pop a type ty; pop a name n; push a variable
with name n and type ty.

Stack: Before: Otype ty :: Oname n :: stack
After: Oterm (mk_var (n,ty)) :: stack

V.

galois

Joe Hurd OpenTheory 14 / 45

Proof Articles

Call Stack Operations

Definition (The “call” and “return” article commands)

call
Pop a name n; pop an object i; push the function call
marker Ocall n; push the input value i.

Stack: Before: Oname n :: i :: stack
After: i :: Ocall n :: stack

return
Pop a name n; pop an object r; pop objects from the stack
up to and including the top function call marker Ocall n;
push the return value r.

Stack: Before: Oname n :: r :: ... :: Ocall n :: stack
After: r :: stack

galois

Joe Hurd OpenTheory

Proof Articles

Constructing Theorems

The thm command constructs a theorem with given hypotheses
and conclusion.

Definition (The “thm” article command)

thm
Pop a term c; pop a list of terms h;
push the theorem h |- ¢ with hypothesis h and conclusion c.
Stack: Before: Oterm c :: Olist [Oterm h1l, ..., Oterm hn] :: stack
After: Othm ([h1, ..., hn] |- c¢) :: stack

But wait! Theorems can't be constructed from their hypotheses
and conclusion, they must be proved using primitive inferences.
What's going on?
galois

Joe Hurd OpenTheory 16 / 45

Proof Articles

Constructing Theorems (The Real Story)

Joe Hurd

@ The thm just gives the specification for the theorem to be
constructed—it doesn't say how it should be proved.

@ Theorems are proved by the following methods (in order of
preference):

@ The theorem might be a theory export previously proved in the
article (see next slide).

@ The current function might be a primitive inference rule, in
which case the result theorem is proved by simulating the
inference using the input arguments.

© The theorem might be inside a data object on the stack.

© If none of the previous rules apply, the theorem is asserted as
an axiom and becomes a dependency of the theory.

galois

OpenTheory 17 / 45

Proof Articles
Article Exports

In addition to the stack, programs reading articles also maintain a

list of theorems that will be exported from theory.

Definition (The “save” article command)

save
Pop a theorem th; add th to the list of
theorems that the article will export.

Stack: Before: O0Othm th :: stack
After: stack

Export list: Before: saved
After: saved @ [th]

Joe Hurd OpenTheory

galois

18 / 45

Proof Articles
The Dictionary

@ In addition to the stack and the export list, programs reading
articles also maintain a dictionary mapping integers to data
objects.

@ Data objects need only be constructed once, saved in the
dictionary and then used multiple times.

@ Without the dictionary, data objects with a great deal of
memory sharing could expand exponentially in articles.

galois

Joe Hurd OpenTheory 19 / 45

Proof Articles
Adding to the Dictionary

Definition (The “def” article command)
def

Pop a number k; peek an object x; update the
dictionary so that key k maps to object x.

Stack: Before: Onum k :: x :: stack
After: x :: stack

Dictionary: Before: dict
After: dictl[k |[-> x]

galois

Joe Hurd OpenTheory 20 / 45

Proof Articles
Reading the Dictionary

Definition (The “ref” article command)

ref
Pop a number k; look up key k in the dictionary
to get an object x; push the object x.

Stack: Before: Onum k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict

galois

Joe Hurd OpenTheory 21 /45

Proof Articles

Removing from the Dictionary

Definition (The “remove” article command)
remove

Pop a number k; look up key k in the dictionary
to get an object x; push the object x; delete
the entry for key k from the dictionary.

Stack: Before: Onum k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict[entry k deleted]

Joe Hurd

OpenTheory

HOL Light Case Study

Generating Articles from HOL Light

@ We instrumented HOL Light v2.20 to emit articles for each of
the theory files in the distribution.

@ Each primitive inference (and selected other functions)
generates call and return article commands with the
argument and return values.

o Exceptions are trapped and an Oerror return value is
generated, and then the exception is re-raised.

@ The theorems left on the stack are treated as the export list of
the article.

@ For each article a dictionary is maintained of all types and
terms constructed.

galois

Joe Hurd OpenTheory 24 / 45

HOL Light Case Study
HOL Light Articles

hol-light article (Kb) gzip'ed

theory article (Kb)

num 1,821 227

arith 25,878 2,736

wf 29,139 3,210

calc_num 3,903 372

normalizer 2,845 300

grobner 2,412 256

ind-types 10,520 1,262

list 11,997 1,440

realax 23,530 2,510

calc_int 2,844 314

realarith 15,981 1,311

real 29,081 3,078

calc_rat 2,536 287

int 39,463 3,371

sets 146,661 15,517

iter 144,682 13,254

cart 18,968 1,948 .
define 79,573 8,005 galois

Joe Hurd OpenTheory 25 / 45

HOL Light Case Study
Compressing Articles

@ The articles generated by HOL Light are compressed by the
following post-processing steps:

@ Adding explicit save commands to the exported theorems,
instead of leaving them on the stack.

@ Not adding data objects to the dictionary that are only used
once.

© Removing data objects from the dictionary on their last use.
@ Eliminating all function calls where the result does not
contribute to the exported theorems.

@ Trick: By storing dependency pointers with each data object,
the garbage collector takes care of dead inference elimination
automatically as the article is read.

galois

Joe Hurd OpenTheory 26 / 45

HOL Light Case Study

Compressing the HOL Light Articles

hol-light article | comp. | comp. gzip’ed | gzip’ed | comp.
theory (Kb) (Kb) ratio article comp. ratio
(Kb) (Kb)
num 1,821 790 57% 227 113 51%
arith 25,878 6,940 74% 2,736 966 65%
wf 29,139 6,037 80% 3,210 854 74%
calc_num 3,903 1,518 62% 372 200 47%
normalizer 2,845 660 77% 300 91 70%
grobner 2,412 718 71% 256 102 61%
ind-types 10,520 4,287 60% 1,262 590 54%
list 11,997 4,586 62% 1,440 645 56%
realax 23,530 7,699 68% 2,510 1,063 58%
calc_int 2,844 825 71% 314 118 63%
realarith 15,981 4,598 2% 1,311 580 56%
real 29,081 8,604 71% 3,078 1,164 63%
calc_rat 2,536 1,130 56% 287 155 46%
int 39,463 8,935 78% 3,371 1,203 65%
sets 146,661 | 24,839 84% 15,517 3,460 78%
iter 144,682 | 24,260 84% 13,254 3,342 75%
cart 18,968 3,336 83% 1,948 469 76%
define 79,573 | 15,787 81% 8,005 2,156 74%

Joe Hurd

OpenTheory

galois

27 / 45

HOL Light Case Study
HOL Light Article Summary

Concatenating all the HOL Light theories in turn generates an
article exporting 126,555 theorems, and depending on 3 axioms:

Axioms (The HOL Light axioms)

types:

bool fun ind
consts:

I /\ = ==> ? ONE_ONE ONTO select ~
thms:

- 't. (\x. t x) =t
|- 'P x. P x ==> P ((select) P)
|- ?f. ONE_ONE f /\ ~ONTO f

galois

Joe Hurd OpenTheory 28 / 45

Theory Engineering
Article Summaries

@ Until now we have been focused on the details of the proof
format.

@ Now let us focus on the interface to the article, called
summaries, I = A:

o [: The set of axioms that the theory depends on.
o A: The set of theorems that the theory exports.

@ Reducing the export set is always safe:
filteras (TFA) = TH(ANA)
@ Also, stack-based languages are concatenative:
(MTiFAY)-(TaFA) = T1U(Ma—A))EFATUA,

galois

Joe Hurd OpenTheory 30/ 45

Theory Engineering
Mapping Constant Names

Definition (The “const” article command)

const

Pop a type ty; pop a name n; push a constant
with name (interpret_const_name n) and type ty.

Stack: Before: O0Otype ty :: Oname n :: stack
After: Oterm (mk_comnst (n’,ty)) :: stack
where n’ = interpret_const_name n

The interpret_const _name function is present to handle the

situation where theorem provers have given the same constant
different names.

galois

Joe Hurd OpenTheory 31/ 45

Theory Engineering
Theory Interpretations

@ The interpret_const_name and interpret_type_name
functions can be used creatively to simulate theory
interpretations.

@ The same article can be re-run with different interpretations
to bind the dependencies to different theorems in the local
context, and generate different exports.

@ This provides a limited theory substitution operator.

(TFA)o = Tolk Ao

Joe Hurd OpenTheory 32 /45

Theory Engineering
Theory Operations

@ We have presented three theory operations:
© reducing the exported theorems;
@ concatenation;
@ interpreting constant and type names.
@ Theory Engineering Challenge: Design theories that can be
applied in many contexts using the above operations.

@ From this perspective, theories are like ML functors, which
map modules to modules:

ML module ~ HOL theory
types ~ types
values ~ constants

type judgements ~ theorems
implementation ~ proof

galois

Joe Hurd OpenTheory 33 /45

Theory Engineering
Example |

Code (A Haskell type class instance)

instance Ord a => Ord [a] where
(] <= _ = True
i <= 1] False
X:Xs <= y:ys if x <= y then
if y <= x then xs <= ys else True
else False

What's missing here?
Missing Dependency: Require <= to be a total order on elements.

Missing Export: Can guarantee that <= is a total order on
elements.

galois

Joe Hurd OpenTheory 34 /45

Theory Engineering
Example | — Defining Type Class Properties

Definition (Total orders)

|- refl rel r = !x. r x x
|- antisym_rel r = !xy. rxy /\N\ryx==>x=y
|- trans_rel r = !xyz. rxy /\ryz==>rz3xz2

|- total_rel r = !xy. rxy \/ ryx
|- pre_order r <=> refl rel r /\ trans_rel r

|- partial_order r <=> pre_order r /\ antisym_rel r

|- total_order r <=> partial_order r /\ total_rel r

galois

Joe Hurd OpenTheory 35 /45

Theory Engineering

Example | — Adding Properties to Type Classes

Create a theory containing an uninterpreted type T and constant
cmp, and an axiom that cmp is a total order over T.

Axioms (Type class example theory)

types:

T
consts:

cmp total_order
thms:

|- total_order cmp

When the theory is applied, the type T and constant cmp will be
interpreted to a concrete type and total order.

galois

Joe Hurd OpenTheory 36 / 45

Theory Engineering

Example | — Adding Properties to Type Classes

Theory (Type class example theory)

consts:
cmp_list
thms:
|- cmp_list NIL 12 = T /\
cmp_list (CONS hil t1) NIL = F /\
cmp_list (CONS hil t1) (CONS h2 t2) =
if cmp hl h2 then

if cmp h2 hl then cmp_list tl t2 else T
else F

|- total_order cmp_list

We retain the definition of cmp_list from the Haskell type class
instance, but we also know that it is a total order (if cmp is).
galois

Joe Hurd OpenTheory 37 /45

Theory Engineering
Example I

@ Harrison's thesis showed how to mechanize the construction
of the real numbers using the positive route:

Z+ ~ Q+ ~ RJr
@ After this step there remain three similar constructions:
Zt~~7 Qt~Q RTwR

@ This is a perfect application for theory interpretation.

galois

Joe Hurd OpenTheory 38 /45

Theory Engineering

Example |l — Defining Negative Number Types

Axioms (Negative number example theory)

Joe Hurd

types:

P

consts:
leP addP subP multP

thms:

'x. 1leP x x
x y. lePxy /\ 1leP y x ==> x =y
'x yz. 1eP x y /\ 1leP y z ==> 1leP x z
'x y. 1leP x y \/ 1leP y x
!'x y. addP x y = addP y x
!x y z. addP (addP x y) z = addP x (addP y z)
'xx’yy’.
leP x x’ /\ leP y y’ ==> 1leP (addP x y) (addP x’ y’)
!x y. "1eP (addP x y) x
'x y. "1eP y x ==> addP x (subP y x) =y
'x y. multP x y = multP y x
'x y z. multP (multP x y) z = multP x (multP y z)

OpenTheory

1S

39 / 45

Theory Engineering

Example |l — Defining Negative Number Types
Theory (Negative number example theory)
types:
N
consts:
zero le add neg sub mult inject
thms:

|- !'x. le x x

[-!'xy. lexy /\Nleyx==>x=y

|- 'xyz. lexy /\ leyz==>1lexz
|- 'xy. lexy \/ leyx

|- !'x. add zero x = x

|- !'x. add x zero = x

|- 'x y. add x y = add y x

|- 'x y z. add (add x y) z = add x (add y z)
|- !'xyz. add xy=add x z = (y = z)

|- 'x y z. le (add x y) (add x z) = le y z
|- 'x x> yy’. .
le x x> /\ le y y’> ==> le (add x y) (add x’ y’) 1S

Joe Hurd OpenTheory 40 / 45

Theory Engineering

Example |l — Defining Negative Number Types

Theory (Negative number example theory)

more thms:
|- neg zero = zero
|- 'x. neg x = zero = (x = zero)

|- !'x. neg (neg x) = x
|- !'x. add x (neg x) = zero
|- !'x. add (neg x) x = zero

|- sub x y = add x (neg y)
|- 'x y. add x (sub y x) =y

|- !'x. mult zero x = zero

|- !'x. mult x zero = zero

|- !'x y. mult x y = mult y x

|- 'x y z. mult (mult x y) z = mult x (mult y z)

Joe Hurd OpenTheory

galois

41/ 45

Example |l — Defining Negative Number Types

Theory (Negative number example theory)

even more thms:
|- 'x y. 1eP x y = le (inject x) (inject y)
|- !'x y. inject (addP x y) = add (inject x) (inject y)
|- 'x y.
“1eP x y ==>
inject (subP x y) = sub (inject x) (inject y)
|- !'x y. inject (multP x y) = mult (inject x) (inject y)

|- !x. “(inject x = zero)
|- !'x y. “(inject x = neg (inject y))

|- !'p.
(!x. p (inject x)) /\ p zero /\
('z. p (neg (inject x))) ==> !x. p x

Joe Hurd OpenTheory 42 / 45

OpenTheory Platform

Build up a collection of reusable theories in article format.

Store them in publically-accessible repositories.

A local installer supports queries of the form: Build a theory
with new types and constants satisfying a set of theorems.

o It uses article summaries from the repositories to reduce the
input query to alternative dependencies.

e Tries to automatically resolve the dependencies using locally
installed theories, or by calling itself recursively down to some
fixed depth.

Eventually, just want an apt-get or cabal-install style user
interface:

opentheory install complex-numbers

galois

Joe Hurd OpenTheory 44 / 45

Summary

@ The talk has presented the OpenTheory project for managing
higher order logic theories.

@ The project web page:
http://opentheory.gilith.com

galois

Joe Hurd OpenTheory 45 / 45

http://opentheory.gilith.com

	Proof Articles
	HOL Light Case Study
	Theory Engineering
	Grand Vision
	Summary

