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The Tour Starts Here

This talk will give a guided tour of the mathematics
underlying cryptography.

We’ll take apart a related set of public key cryptographic
algorithms, to see how they work.

Disclaimer: The algorithms are presented in their simplest
form—actual systems would implement much more efficient
versions.
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Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol allows two people to
use a public channel to set up a shared secret key:

1 Alice and Bob publically agree on a large prime p and an
integer x .

2 Alice randomly picks an integer a, and sends Bob xa mod p.

3 Bob randomly picks an integer b, and sends Alice xb mod p.
4 Alice and Bob both compute xab mod p and use this as a

shared secret key.

Alice computes ((xb mod p)a mod p) = (xab mod p).
Bob computes ((xa mod p)b mod p) = (xab mod p).
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Modular Multiplication Groups

Multiplication modulo a prime p forms a group:

There’s an identity 1 such that x ∗ 1 = x .
Each element x has an inverse x−1 such that x ∗ x−1 = 1.
The operation ∗ is associative: x ∗ (y ∗ z) = (x ∗ y) ∗ z .

The order |x | of x is the smallest n such that xn = 1.

Example: Multiplication modulo 7:

Operation Inverse Order
∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

·−1

1 1
2 4
3 5
4 2
5 3
6 6

| · |
1 1
2 3
3 6
4 3
5 6
6 2
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Group Examples

Number groups
Addition of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
Multiplication of non-zero real numbers.

Permutation groups (group operation is composition)

Substitution ciphers.
Card shuffles (|G | = 52!, |riffle| = 7).
Symmetry groups of regular polygons.
Rubik’s cube.

Product groups G × H

(x1, y1) ∗G×H (x2, y2) = (x1 ∗G x2, y1 ∗H y2)
1G×H = (1G , 1H).
(x , y)−1 = (x−1, y−1).
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Group Exponentiation

Given a group G , we can efficiently compute exponentiation
xn using repeated squaring:

1 If n = 0 then return the group identity,
2 else if n is even then return (x ∗ x)n/2,
3 else return x ∗ (xn−1).

Computing xn using repeated squaring requires O(log n)
group operations.
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The Discrete Logarithm Problem

Given a group G , the Discrete Logarithm Problem tests the
difficulty of inverting exponentiation:

Given g , h ∈ G , find a k such that gk = h.

The difficulty of this problem depends on the group G .

For addition modulo p, the problem can be solved in
O(log |G |) time.
For an ideal black-box group G , solving the discrete logarithm
problem requires O(

√
|G |) group operations.

For multiplication modulo p, the problem is hard.

But: The best known algorithm can solve it faster than
black-box.
And: Odlyzko (1991) broke the secure identification option of
the Sun Network File System which used a prime of 192 bits.
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Group Encryption: ElGamal

The ElGamal encryption algorithm can use any instance gk = h
of the Discrete Logarithm Problem.

1 Alice obtains a copy of Bob’s public key (g , h).

2 Alice generates a randomly chosen natural number
i ∈ {1, . . . , |G | − 1} and computes a = g i and b = him.

3 Alice sends the encrypted message (a, b) to Bob.

4 Bob receives the encrypted message (a, b). To recover the
message m he uses his private key k to compute

a−kb = (g i )−khim = g−ik(gk)im = gki−ikm = m .
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Subgroups

A group H is a subgroup of a group G if H ⊆ G and H has
the same operation, inverse and identity.

Example: Integer addition is a subgroup of real addition.
Example: Substitution ciphers mapping A 7→ A are a
subgroup of all substitution ciphers.
Non-example: Substitution ciphers mapping A 7→ B are not a
subgroup of anything (no identity, not a group).

A group G has two trivial subgroups:

the whole group G ; and
the subgroup consisting of just the identity.
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Lagrange’s Theorem

Theorem: If H is a subgroup of a finite group G , then |H|
divides |G |.

Proof: Define the equivalence relation g1 ∼ g2 iff there exists
h ∈ H such that h ∗ g1 = g2.

Corollary: For each element g ∈ G , |g | divides |G |.
Proof: Each group element g ∈ G generates a subgroup
{gn | 0 ≤ n < |g |} .

Corollary: For each element g ∈ G , g |G | is the identity.

Proof: g |G | = g |g |k = (g |g |)k = 1k = 1.
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RSA Encryption

1 Bob chooses two large primes p, q and computes n = pq.

2 Bob chooses an integer e and computes d such that

ed mod (p − 1)(q − 1) = 1 .

3 Bob publishes (n, e) as his public key.

4 Alice takes her message m and computes c = me mod n.

5 Alice sends c to Bob.

6 Bob receives c and computes

cd mod n = (me mod n)d mod n = med mod n = m .
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“The Magic Words are Squeamish Ossifrage”

Chinese Remainder Theorem: Multiplication modulo n is
the product group of multiplication modulo p and
multiplication modulo q.

The group of multiplication modulo a prime p consists of
elements {1, . . . , p − 1}, and thus has size p − 1.

The group G of multiplication modulo n therefore has size
(p − 1)(q − 1), and so

med mod n = mk(p−1)(q−1)+1 mod n

= mk|G |+1 mod n

= (m|G | mod n)km mod n
= 1km mod n
= m

Joe Hurd Mathematics of Cryptography 15 / 32



Group Introduction Inside RSA Case Study Elliptic Curves

Blum Integers

Fact: Given a prime p such that p mod 4 = 3, exactly one of
x and −x has square roots. If x has square roots, they can be
computed by ±(x (p+1)/4 mod p).

A number n is a Blum integer if n = pq with p, q primes
equal to 3 modulo 4.

Theorem: If n is a Blum integer and x is a square mod n,
then x has four square roots and exactly one of these is itself
a square mod n. Call this unique square root the principal
square root.

Theorem: Computing square roots modulo n is
RP-equivalent to factoring n.
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Bit Commitment

This protocol allows Alice and Bob to fairly flip a coin over a
network.

1 Alice randomly picks a large Blum integer n = pq and an
integer x .

2 Alice computes y = x2 mod n, and z = y2 mod n.

3 Alice sends Bob (n, z).

4 Bob has to guess whether y lies in the range H = (0, 1
2n) or

the range T = (1
2n, n).

5 Bob randomly picks H or T and sends his guess to Alice.

6 Alice sends Bob (p, q, x).
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Zero-Knowledge Proof

Let Alice have a secret: a Hamilton cycle H in a large graph
G .

The bit commitment protocol can be built upon to allow Alice
to prove she knows the secret to Bob, but without revealing
it:

1 Alice randomly permutes all the vertex labels on G to create a
new graph G ′.

2 She then makes two commitments: the vertex pairing she used
f : G → G ′; and the new Hamilton cycle H ′ = f (H).

3 She sends G ′ and these commitments to Bob.
4 Bob randomly chooses either H ′ or f , and sends his choice to

Alice.
5 Alice sends Bob the information he needs to reveal his choice.
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Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

The algorithms are more complex, so it’s harder to implement
them correctly.
Patent uncertainty surrounding many implementation
techniques.
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Elliptic Curves

An elliptic curve is the set of points (x , y) satisfying an
equation of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 .

Despite the name, they don’t look like ellipses!

Elliptic curves are used in number theory: Wiles proved
Fermat’s Last Theorem by showing that the elliptic curve

y2 = x(x − an)(x + bn)

generated by a counter-example an + bn = cn cannot exist.
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Example Elliptic Curve y 2 + y = x3 − x
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Example Elliptic Curve y 2 = x3 − 1
2x + 1

2
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Example Elliptic Curve y 2 = x3 − 4
3x + 16

27
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Example Elliptic Curve y 2 = x3
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Elliptic Curve Group

Fact: The points (x , y) satisfying the elliptic curve equation
form a group.

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

The identity is a special zero point O infinitely far up the
y-axis.
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Example Elliptic Curve y 2 = x3 − x
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Example Elliptic Curve y 2 = x3 − x : Addition
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Example Elliptic Curve y 2 = x3 − x : Doubling

Joe Hurd Mathematics of Cryptography 30 / 32



Group Introduction Inside RSA Case Study Elliptic Curves

Example Elliptic Curve y 2 = x3 − x : Negation
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Elliptic Curve Cryptography

The graphs showed elliptic curves points (x , y) where x and y
were real numbers.

But the elliptic curve operations can be defined for any
underlying field.

Instead of the geometric definition, use algebra:

−(x , y) = (x ,−y − a1x − a3) .

Elliptic curve cryptography uses finite fields GF(pn).

GF(p) is the field {0, . . . , p − 1} where all arithmetic is
performed modulo the prime p.
GF(2n) is the field of polynomials where all the coefficients are
either 0 or 1.
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