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Elliptic Curves

An elliptic curve over the reals is the set of points (x,y)
satisfying an equation of the form

E : y2 = x3 + ax + b .

There is also a ‘point at infinity’ considered to lie on the
elliptic curve, called O.

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.
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The Elliptic Curve y 2 = x3 − x
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Elliptic Curve Arithmetic: Negation
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The Elliptic Curve y 2 = x3 − x : Addition

Joe Hurd Mechanizing Elliptic Curve Associativity 7 / 35



Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

The Elliptic Curve y 2 = x3 − x : Doubling
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The Elliptic Curve Group

Theorem

Elliptic curve addition forms a group, i.e.,

1 O + P = P

2 −P + P = O
3 (P + Q) + R = P + (Q + R)

plus the closure conditions P,Q ∈ E =⇒ O,−P,P + Q ∈ E.
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Cryptography Based on Groups

The Discrete Logarithm Problem over a group G tests the
difficulty of inverting the power operation:

Given x , y ∈ G , find a k such that xk = y .

Cryptographic operations can be built using this primitive.

Elgamal encryption
Digital Signature Algorithm

The level of security depends entirely on the group G .

The group of addition modulo n is easily broken.
A ‘black-box group’ requires

√
|G | group operations to break.

Standard public key cryptography uses the group of
multiplication modulo a large prime.
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Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.
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Elliptic Curve Cryptography: More Secure?

This table shows equal security key sizes:

standard elliptic curve

1024 bits 173 bits
4096 bits 313 bits

But. . . there has been less theoretical effort made to attack
elliptic curve cryptosystems.
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Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Critical application, so need to go beyond bug finding to
assurance of correctness.

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

Joint project between Cambridge University and the University
of Utah, managed by Mike Gordon.
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Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code

Joe Hurd Mechanizing Elliptic Curve Associativity 15 / 35



Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Verification Guarantee

The verified ARM code should be correct and secure.
1 Functional correctness:

Encryption followed by decryption is the identity.

2 A security guarantee:

The code correctly implements elliptic curve Elgamal.

Note: Functional correctness relies on the elliptic curve group.
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Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the
curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”
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Negation of Elliptic Curve Points (2)

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])
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Elliptic Curve Addition

And now Blake, Seroussi and Smart’s definition of point addition:

“Set

λ =
y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1

when x1 6= x2, and set

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,

µ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

when x1 = x2 and P2 6= −P1.”
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Elliptic Curve Addition (2)

“If
P3 = (x3, y3) = P1 + P2 6= O

then x3 and y3 are given by the formulae

x3 = λ2 + a1λ− a2 − x1 − x2 ,
y3 = −(λ + a1)x3 − µ− a3 .”
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Elliptic Curve Addition (3)

Constant Definition
curve_double e =

let f = e.field in

...

let a6 = e.a6 in

curve_case e (curve_zero e)

(λx1 y1.

let d = & 2 * y1 + a1 * x1 + a3 in

if d = field_zero f then curve_zero e

else

let l = (& 3 * x1 ** 2 + & 2 * a2 * x1 + a4 - a1 * y1) / d in

let m = (~(x1 ** 3) + a4 * x1 + & 2 * a6 - a3 * y1) / d in

let x = l ** 2 + a1 * l - a2 - &2 * x1 in

let y = ~(l + a1) * x - m - a3 in

affine e.field [x; y])

The special case of P1 = −P1 is handled by the test for d = 0.
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Elliptic Curve Addition (4)

Constant Definition
curve_add e p1 p2 =

if p1 = p2 then curve_double e p1

else

let f = e.field in

...

let a6 = e.a6 in

curve_case e p2

(λx1 y1.

curve_case e p1

(λx2 y2.

if x1 = x2 then curve_zero e

else

let d = x2 - x1 in

let l = (y2 - y1) / d in

let m = (y1 * x2 - y2 * x1) / d in

let x = l ** 2 + a1 * l - a2 - x1 - x2 in

let y = ~(l + a1) * x - m - a3 in

affine e.field [x; y]) p2) p1
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Associativity Challenge Problem

Goal (Associativity of Point Addition)

∀e ∈ Curve. ∀p q r ∈ curve_points e.

curve_add e p (curve_add e q r)
=

curve_add e (curve_add e p q) r
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Challenge 1: General Fields

Elliptic curve addition is a group for any underlying field.

Can’t simply specialize to the real or complex numbers,
because cryptography application uses finite fields.
Can’t simply assume the field elements form an entire type,
because that makes it difficult to reason about subfields (the
original Galois connection).

So all the field operations must be partial functions.

The assisting tool must be able to handle partial functions.
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Challenge 2: Case Splitting

A naive approach expands all the cases in the associativity
goal (doubling vs. adding distinct points, etc.).

This generates about 100 subgoals, each with a slightly
different logical context.

The assisting tool must be able to keep track of all the
assumptions in each case.
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Challenge 3: Polynomial Normalization

After splitting into cases the naive approach expands all the
polynomials and tries to show them equal.

The intermediate expressions can become large (millions of
symbols).

An instance of proof state space explosion?

The assisting tool must be able to handle large terms.
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Computer Algebra Techniques in Theorem Proving

1 Use a computer algebra system as an oracle.

Needs careful handling to avoid unsoundness.

2 Use the computer algebra system to compute a witness for
the problem, and then verify it in the theorem prover.

Sound, but not all problems fit into the model.

3 Implement computer algebra techniques as derived rules.

Sound, covers all problems, but might be inefficient.

4 Implement computer algebra algorithms and data structures
as object logic functions, prove them correct and execute
them in the theorem prover.

Sound and efficient (same complexity), but can be difficult.
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Simple Polynomial Normalization

Proving that doubling a point on an elliptic curve results in
another point on the curve can be solved naively by
multiplying out.

The normalized polynomials reach 300,000 symbols before
cancelling out, which is too big for the HOL theorem prover.

However, this isn’t a big problem for a computer algebra
system.

Would like a simple polynomial normalization algorithm.

Today will be used as an ML oracle.
One day could be formalized in HOL and proved correct.
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Simple Polynomial Normalization

Consider the following data structure for polynomials:

Type Definition

poly = Var of string
| Sum of (poly,int) finiteMap
| Prod of (poly,int) finiteMap

Example: (2x + 3)6 is represented as

Prod {Sum {Var x 7→ 2, Prod {} 7→ 3} 7→ 6}

Note that numbers don’t need a special constructor.
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Simple Polynomial Normalization

Simple normalization rules:

Sum ({p 7→ 0} ∪M) −→ Sum M
Prod ({p 7→ 0} ∪M) −→ Prod M

Sum ({Sum M ′ 7→ n} ∪M) −→ Sum ((n ∗M ′) ∪M)
Prod ({Prod M ′ 7→ n} ∪M) −→ Prod ((n ∗M ′) ∪M)

One complicated normalization rule:

Prod ({Sum S 7→ n} ∪ P) −→ Sum (Sn ∗ P)

where Sn is the multinomial

(x1 + · · ·+ xm)n =
∑

k1,...,km

(
n

k1, . . . , km

)
xk1
1 · · · xkm

m
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Simple Polynomial Normalization

These rules are sufficient to normalize polynomials.

Though simple, they are efficient enough to prove the closure
of point doubling in just a few seconds.

Notice that the bulk of the work is being done by the data
structure, not the algorithm.

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified. Show
me your tables, and I won’t usually need your
flowcharts; they’ll be obvious. [Brooks, 1975]
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Summary

This talk has proposed the elliptic curve associativity law as a
challenge problem for automated reasoning.

It is a rare instance of a deep mathematical theorem that is
needed for a practical low-level verification.

One way to meet the challenge avoiding case splitting and
large expressions would be to mechanize all the abstract
algebra used in a mathematical proof.

This would be just as impressive!
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