
Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Mechanizing Elliptic Curve Associativity
Why a Formalized Mathematics Challenge is Useful for

Verification of Crypto ARM Machine Code

Joe Hurd

Computer Laboratory
University of Cambridge

Galois Connections
Friday 15 December 2006

Joe Hurd Mechanizing Elliptic Curve Associativity 1 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Talk Plan

1 Introduction

2 Elliptic Curve Cryptography

3 Challenge Problem

4 Polynomial Normalization

5 Summary

Joe Hurd Mechanizing Elliptic Curve Associativity 2 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curves

An elliptic curve over the reals is the set of points (x,y)
satisfying an equation of the form

E : y2 = x3 + ax + b .

There is also a ‘point at infinity’ considered to lie on the
elliptic curve, called O.

It’s possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

Joe Hurd Mechanizing Elliptic Curve Associativity 4 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

The Elliptic Curve y 2 = x3 − x

Joe Hurd Mechanizing Elliptic Curve Associativity 5 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Arithmetic: Negation

Joe Hurd Mechanizing Elliptic Curve Associativity 6 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

The Elliptic Curve y 2 = x3 − x : Addition

Joe Hurd Mechanizing Elliptic Curve Associativity 7 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

The Elliptic Curve y 2 = x3 − x : Doubling

Joe Hurd Mechanizing Elliptic Curve Associativity 8 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

The Elliptic Curve Group

Theorem

Elliptic curve addition forms a group, i.e.,

1 O + P = P

2 −P + P = O
3 (P + Q) + R = P + (Q + R)

plus the closure conditions P,Q ∈ E =⇒ O,−P,P + Q ∈ E.

Joe Hurd Mechanizing Elliptic Curve Associativity 9 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Cryptography Based on Groups

The Discrete Logarithm Problem over a group G tests the
difficulty of inverting the power operation:

Given x , y ∈ G , find a k such that xk = y .

Cryptographic operations can be built using this primitive.

Elgamal encryption
Digital Signature Algorithm

The level of security depends entirely on the group G .

The group of addition modulo n is easily broken.
A ‘black-box group’ requires

√
|G | group operations to break.

Standard public key cryptography uses the group of
multiplication modulo a large prime.

Joe Hurd Mechanizing Elliptic Curve Associativity 11 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.

Joe Hurd Mechanizing Elliptic Curve Associativity 12 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Cryptography: More Secure?

This table shows equal security key sizes:

standard elliptic curve

1024 bits 173 bits
4096 bits 313 bits

But. . . there has been less theoretical effort made to attack
elliptic curve cryptosystems.

Joe Hurd Mechanizing Elliptic Curve Associativity 13 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Critical application, so need to go beyond bug finding to
assurance of correctness.

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

Joint project between Cambridge University and the University
of Utah, managed by Mike Gordon.

Joe Hurd Mechanizing Elliptic Curve Associativity 14 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code

Joe Hurd Mechanizing Elliptic Curve Associativity 15 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Verification Guarantee

The verified ARM code should be correct and secure.
1 Functional correctness:

Encryption followed by decryption is the identity.

2 A security guarantee:

The code correctly implements elliptic curve Elgamal.

Note: Functional correctness relies on the elliptic curve group.

Joe Hurd Mechanizing Elliptic Curve Associativity 16 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the
curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Mechanizing Elliptic Curve Associativity 18 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Negation of Elliptic Curve Points (2)

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

Joe Hurd Mechanizing Elliptic Curve Associativity 19 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Addition

And now Blake, Seroussi and Smart’s definition of point addition:

“Set

λ =
y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1

when x1 6= x2, and set

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,

µ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

when x1 = x2 and P2 6= −P1.”

Joe Hurd Mechanizing Elliptic Curve Associativity 20 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Addition (2)

“If
P3 = (x3, y3) = P1 + P2 6= O

then x3 and y3 are given by the formulae

x3 = λ2 + a1λ− a2 − x1 − x2 ,
y3 = −(λ + a1)x3 − µ− a3 .”

Joe Hurd Mechanizing Elliptic Curve Associativity 21 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Addition (3)

Constant Definition
curve_double e =

let f = e.field in

...

let a6 = e.a6 in

curve_case e (curve_zero e)

(λx1 y1.

let d = & 2 * y1 + a1 * x1 + a3 in

if d = field_zero f then curve_zero e

else

let l = (& 3 * x1 ** 2 + & 2 * a2 * x1 + a4 - a1 * y1) / d in

let m = (~(x1 ** 3) + a4 * x1 + & 2 * a6 - a3 * y1) / d in

let x = l ** 2 + a1 * l - a2 - &2 * x1 in

let y = ~(l + a1) * x - m - a3 in

affine e.field [x; y])

The special case of P1 = −P1 is handled by the test for d = 0.

Joe Hurd Mechanizing Elliptic Curve Associativity 22 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Elliptic Curve Addition (4)

Constant Definition
curve_add e p1 p2 =

if p1 = p2 then curve_double e p1

else

let f = e.field in

...

let a6 = e.a6 in

curve_case e p2

(λx1 y1.

curve_case e p1

(λx2 y2.

if x1 = x2 then curve_zero e

else

let d = x2 - x1 in

let l = (y2 - y1) / d in

let m = (y1 * x2 - y2 * x1) / d in

let x = l ** 2 + a1 * l - a2 - x1 - x2 in

let y = ~(l + a1) * x - m - a3 in

affine e.field [x; y]) p2) p1

Joe Hurd Mechanizing Elliptic Curve Associativity 23 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Associativity Challenge Problem

Goal (Associativity of Point Addition)

∀e ∈ Curve. ∀p q r ∈ curve_points e.

curve_add e p (curve_add e q r)
=

curve_add e (curve_add e p q) r

Joe Hurd Mechanizing Elliptic Curve Associativity 24 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Challenge 1: General Fields

Elliptic curve addition is a group for any underlying field.

Can’t simply specialize to the real or complex numbers,
because cryptography application uses finite fields.
Can’t simply assume the field elements form an entire type,
because that makes it difficult to reason about subfields (the
original Galois connection).

So all the field operations must be partial functions.

The assisting tool must be able to handle partial functions.

Joe Hurd Mechanizing Elliptic Curve Associativity 25 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Challenge 2: Case Splitting

A naive approach expands all the cases in the associativity
goal (doubling vs. adding distinct points, etc.).

This generates about 100 subgoals, each with a slightly
different logical context.

The assisting tool must be able to keep track of all the
assumptions in each case.

Joe Hurd Mechanizing Elliptic Curve Associativity 26 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Challenge 3: Polynomial Normalization

After splitting into cases the naive approach expands all the
polynomials and tries to show them equal.

The intermediate expressions can become large (millions of
symbols).

An instance of proof state space explosion?

The assisting tool must be able to handle large terms.

Joe Hurd Mechanizing Elliptic Curve Associativity 27 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Computer Algebra Techniques in Theorem Proving

1 Use a computer algebra system as an oracle.

Needs careful handling to avoid unsoundness.

2 Use the computer algebra system to compute a witness for
the problem, and then verify it in the theorem prover.

Sound, but not all problems fit into the model.

3 Implement computer algebra techniques as derived rules.

Sound, covers all problems, but might be inefficient.

4 Implement computer algebra algorithms and data structures
as object logic functions, prove them correct and execute
them in the theorem prover.

Sound and efficient (same complexity), but can be difficult.

Joe Hurd Mechanizing Elliptic Curve Associativity 29 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Simple Polynomial Normalization

Proving that doubling a point on an elliptic curve results in
another point on the curve can be solved naively by
multiplying out.

The normalized polynomials reach 300,000 symbols before
cancelling out, which is too big for the HOL theorem prover.

However, this isn’t a big problem for a computer algebra
system.

Would like a simple polynomial normalization algorithm.

Today will be used as an ML oracle.
One day could be formalized in HOL and proved correct.

Joe Hurd Mechanizing Elliptic Curve Associativity 30 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Simple Polynomial Normalization

Consider the following data structure for polynomials:

Type Definition

poly = Var of string
| Sum of (poly,int) finiteMap
| Prod of (poly,int) finiteMap

Example: (2x + 3)6 is represented as

Prod {Sum {Var x 7→ 2, Prod {} 7→ 3} 7→ 6}

Note that numbers don’t need a special constructor.

Joe Hurd Mechanizing Elliptic Curve Associativity 31 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Simple Polynomial Normalization

Simple normalization rules:

Sum ({p 7→ 0} ∪M) −→ Sum M
Prod ({p 7→ 0} ∪M) −→ Prod M

Sum ({Sum M ′ 7→ n} ∪M) −→ Sum ((n ∗M ′) ∪M)
Prod ({Prod M ′ 7→ n} ∪M) −→ Prod ((n ∗M ′) ∪M)

One complicated normalization rule:

Prod ({Sum S 7→ n} ∪ P) −→ Sum (Sn ∗ P)

where Sn is the multinomial

(x1 + · · ·+ xm)n =
∑

k1,...,km

(
n

k1, . . . , km

)
xk1
1 · · · xkm

m

Joe Hurd Mechanizing Elliptic Curve Associativity 32 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Simple Polynomial Normalization

These rules are sufficient to normalize polynomials.

Though simple, they are efficient enough to prove the closure
of point doubling in just a few seconds.

Notice that the bulk of the work is being done by the data
structure, not the algorithm.

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified. Show
me your tables, and I won’t usually need your
flowcharts; they’ll be obvious. [Brooks, 1975]

Joe Hurd Mechanizing Elliptic Curve Associativity 33 / 35

Introduction Elliptic Curve Cryptography Challenge Problem Polynomial Normalization Summary

Summary

This talk has proposed the elliptic curve associativity law as a
challenge problem for automated reasoning.

It is a rare instance of a deep mathematical theorem that is
needed for a practical low-level verification.

One way to meet the challenge avoiding case splitting and
large expressions would be to mechanize all the abstract
algebra used in a mathematical proof.

This would be just as impressive!

Joe Hurd Mechanizing Elliptic Curve Associativity 35 / 35

	Introduction
	Elliptic Curve Cryptography
	Challenge Problem
	Polynomial Normalization
	Summary

