First Order Proof for Higher Order Logic Theorem Provers

Joe Hurd

Computing Laboratory Oxford University

ESHOL Workshop 2 December 2005

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers

- Interactive Higher Order Logic Theorem Provers
- First Order Proof Tools

2 Deploying First Order Provers in Higher Order Logic

- Logical Interface
- First Order Calculus

Interactive Higher Order Logic Theorem Provers First Order Proof Tools

Interactive Theorem Provers

- Interactive theorem provers are used to construct mechanized versions of mathematical theories.
- Many applications, including program verification, formalization of mathematics, and analysis of language semantics.
- The expressivity of higher order logic makes it a popular choice to be implemented by interactive theorem provers.
 - Higher order: HOL, Isabelle, PVS, Coq.
 - First order: ACL2, Mizar.

LCF Design

- Theorem provers with an LCF design emphasize logical soundness.
 - Possibly at the cost of efficiency of execution.
- Bad News for Proving: Every theorem (and intermediate lemma) must be constructed by functions implementing the primitive rules of the logic.
- Good News for Proving: A full programming language is provided to automate common patterns of reasoning.
- In practice an LCF design rarely gets in the way of the user.
 - Some proof tools may take longer because of it,
 - but the resulting theorems are high assurance.

Interactive Higher Order Logic Theorem Provers First Order Proof Tools

Interactive Proof: A How To

How to prove a statement S in an interactive theorem prover:

- Set up S as an initial goal.
- Select an automatic tactic that reduces the top goal to a set of simpler subgoals.
- In the second second

Tactics

- Automatic tactics are "little engines of proof" that reduce goals using primitive rules and simpler tactics.
- They can be low level for precise work, such as reducing the goal A ∧ B to the set of subgoals {A, B}.
- Or they can be high level, such as a decision procedure that proves all Presburger arithmetic formulas.
- Why not embed a first order prover inside an automatic tactic?

First Order Provers

- Modern resolution provers are powerful tools.
 - Examples: Vampire, E, Spass, Gandalf.
- Their design emphasizes coverage and speed of execution.
 - Possibly at the cost of soundness.
 - Proofs found by a first order prover must be replayed by the LCF kernel to become theorems of higher order logic.
- Many first order provers are optimized for problems in the TPTP collection, from which the annual competition problems are drawn.
 - Larry Paulson has been contributing problems into TPTP derived from Isabelle subgoals.

Interactive Higher Order Logic Theorem Provers First Order Proof Tools

First Order Logic Calculi

- Resolution was invented by Alan Robinson in the 1960s, and provers have been getting better ever since.
- Not just Moore's law! Many redundant inferences have been eliminated from the first order logic calculus.
- Ordered paramodulation has made a big improvement in the handling of equality.
 - Equality reasoning plays a part in most goals of higher order logic.

Interactive Higher Order Logic Theorem Provers First Order Proof Tools

Previous Combinations

This is not a new idea!

- 1991 FAUST in HOL
- 1994 SEDUCT in LAMBDA
- 1996 MESON in HOL
- 1998 3TAP in KIV
- 1999 blast in Isabelle
- 1999 Gandalf in HOL
- 2000 Bliksem in Coq
- 2002 Metis in HOL

MESON In HOL

- Before Metis came along, MESON_TAC was the only first order proof tool in HOL.
 - Based on the model elimination calculus.
 - Added to HOL in 1996 by John Harrison.
- In 2002, building the core distribution of HOL used MESON_TAC to prove 1779 subgoals:
 - A further 2024 subgoals in the examples.
- Clearly the kind of tool that users want.
 - And this is despite the fact that MESON_TAC is weak on equality reasoning (equality is axiomatized).

Gandalf In HOL

- GANDALF_TAC is a HOL tactic that calls GANDALF.
 - Socket communications between HOL and GANDALF.
 - Added to HOL in 1999.
- The first-order calculus is powerful, and the C implementation is speedy.
- But there is a lot of infrastructure to maintain, and hard to tailor the first-order prover for HOL goals.
- GANDALF_TAC is obsolete today...
 - ... but maybe it was ahead of its time?

Proof With A First Order Tactic: A How To

Here's how to prove the higher order logic subgoal g:

Convert the negation of g to CNF; this results in a HOL theorem of the form

$$\neg g \iff \exists \vec{a}. (\forall \vec{v_1}. c_1) \land \cdots \land (\forall \vec{v_n}. c_n)$$
(1)

Skolemize and map each HOL term *c_i* to first-order logic:

$$\mathbf{C} = \{\mathbf{C}_1, \ldots, \mathbf{C}_n\}$$

- **3** The first-order prover runs on C, and finds a refutation ρ .
- The refutation ρ is translated to a HOL proof of the theorem

$$\{(\forall \vec{v_1}. c_1), \ldots, (\forall \vec{v_n}. c_n)\} \vdash \bot$$
 (2)

• Use theorems (1) and (2) to derive $\vdash g$.

Normalization: The Problem With CNF

- Resolution provers accept input problems in CNF
- But sometimes converting terms to CNF makes their size explode:

$$\mathsf{CNF}\begin{pmatrix} (a_0 \land a_1 \land a_2 \land a_3) \lor (b_0 \land b_1 \land b_2 \land b_3) \lor \\ (c_0 \land c_1 \land c_2 \land c_3) \lor (d_0 \land d_1 \land d_2 \land d_3) \end{pmatrix} = \\ = \\ (a_3 \lor b_3 \lor c_3 \lor d_0) \land (a_2 \lor b_3 \lor c_3 \lor d_0) \land \\ (a_1 \lor b_3 \lor c_3 \lor d_0) \land (a_0 \lor b_3 \lor c_3 \lor d_0) \land \\ \dots 992 \text{ more atoms} \dots \\ (a_0 \lor b_3 \lor c_3 \lor d_3) \land (a_1 \lor b_3 \lor c_3 \lor d_3) \land \\ (a_2 \lor b_3 \lor c_3 \lor d_3) \land (a_3 \lor b_3 \lor c_3 \lor d_3) \end{pmatrix}$$

Definitional CNF

Definitional CNF guarantees the size of normalized terms will be linear in the size of original terms:

$$\mathsf{DEF_CNF}\left(\begin{array}{c}(a_0 \land a_1 \land a_2 \land a_3) \lor (b_0 \land b_1 \land b_2 \land b_3) \lor \\(c_0 \land c_1 \land c_2 \land c_3) \lor (d_0 \land d_1 \land d_2 \land d_3)\end{array}\right) =$$

$$\begin{array}{l} \exists \ v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}. \\ (v_{11} \lor \neg d_0 \lor \neg v_{10}) \land (v_{10} \lor \neg v_{11}) \land (d_0 \lor \neg v_{11}) \land \\ (v_{10} \lor \neg d_1 \lor \neg v_9) \land (v_9 \lor \neg v_{10}) \land (d_1 \lor \neg v_{10}) \land \\ \dots 59 \text{ more atoms} \dots \\ (v_0 \lor \neg v_1) \land (a_1 \lor \neg v_1) \land (v_0 \lor \neg a_2 \lor \neg a_3) \land \\ (a_3 \lor \neg v_0) \land (a_2 \lor \neg v_0) \land (v_2 \lor v_5 \lor v_8 \lor v_{11}) \end{array}$$

Definitional CNF by Inference

- Given an input term *t*, it's easy to generate the definitional CNF normalized term *t*'.
- This allows a fast oracle implementation of normalization into definitional CNF:

$$\{ORACLE_SAYS\} \vdash t \iff t'$$

• Require a HOL proof that *t* and *t'* are logically equivalent:

$$\vdash t \iff t'$$

- This requires additional implementation effort and a slower proof tool.
 - A rare case where the LCF design of HOL gets in the way.

Logical Interface

- Another source of incompleteness is the logical interface between higher and first order logic.
- Cannot hope to be complete, but it's annoying if the tactic fails on 'simple' goals like these:

$$\vdash \exists \mathbf{x}. \mathbf{x} \\ \vdash P(\lambda \mathbf{x}. \mathbf{x}) \land \mathbf{Q} \implies \mathbf{Q} \land P(\lambda \mathbf{y}. \mathbf{y})$$

Logical Interface

- Can program versions of first-order calculi that work directly on HOL terms.
 - But types (and λ 's) add complications;
 - and then the mapping from HOL terms to first-order logic is hard-coded.
- Would like to program versions of the calculi that work on standard first-order terms, and have someone else worry about the mapping to HOL terms.
 - Then coding is simpler and the mapping is flexible;
 - but how can we keep track of first-order proofs, and automatically translate them to HOL?

Logical Interface First Order Calculus

First-order Logical Kernel

Use the ML type system to create an LCF-style logical kernel for clausal first-order logic:

```
signature Kernel = sig
  (* An ABSTRACT type for theorems *)
  eqtype thm
  (* Destruction of theorems is fine *)
  val dest thm : thm \rightarrow formula list \times proof
  (* But creation is only allowed by these primitive rules *)
  val AXIOM : formula list → thm
  val REFL
                 : term \rightarrow thm
  val ASSUME
                : formula → thm
  val INST
                  : subst \rightarrow thm \rightarrow thm
  val FACTOR : thm \rightarrow thm
  val RESOLVE : formula \rightarrow thm \rightarrow thm \rightarrow thm
  val EOUALITY : formula \rightarrow int list \rightarrow term \rightarrow bool \rightarrow thm \rightarrow thm
end
```

Logical Interface First Order Calculus

Making Mappings Modular

The logical kernel keeps track of proofs, and allows the HOL mapping to first-order logic to be modular:

```
signature Mapping =
sig
(* Mapping HOL goals to first-order logic *)
val map_goal : HOL.term → FOL.formula list
(* Translating first-order logic proofs to HOL *)
type Axiom_map = FOL.formula list → HOL.thm
val translate_proof : Axiom_map → Kernel.thm → HOL.thm
end
```

Implementations of Mapping simply provide HOL versions of the primitive inference steps in the logical kernel, and then *all* first-order theorems can be translated to HOL.

Type Information?

- It is not necessary to include type information in the mapping from HOL terms to first-order terms/formulas.
- Principal types can be inferred when translating first-order terms back to HOL.
 - This wouldn't be the case if the type system was undecidable (e.g., the PVS type system).
- But for various reasons the untyped mapping occasionally fails.
 - Examples coming up.

Four Mappings

Metis includes four mappings from HOL to first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping

first-order, untyped first-order, typed higher-order, typed

First-order formula

n < n + 1 $(n:\mathbb{N}) < ((n:\mathbb{N}) + (1:\mathbb{N}):\mathbb{N})$ higher-order, untyped \uparrow ((< . n) . ((+ . n) . 1))

$$\begin{array}{l} \uparrow \left(\left(\left(< : \mathbb{N} \to \mathbb{N} \to \mathbb{B} \right) . \left(n : \mathbb{N} \right) : \mathbb{N} \to \mathbb{B} \right) . \\ \left(\left(\left(+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \right) . \left(n : \mathbb{N} \right) : \mathbb{N} \to \mathbb{N} \right) . \left(1 : \mathbb{N} \right) : \mathbb{N} \right) : \mathbb{B} \end{array}$$

Mapping Efficiency

 Effect of the mapping on the time taken by model elimination calculus to prove a HOL version of Łoś's 'nonobvious' problem:

Mapping	untyped	typed
first-order	1.70s	2.49s
higher-order	2.87s	7.89s

- These timing are typical, although 2% of the time higher-order, typed does beat first-order, untyped.
- We run in <u>untyped</u> mode, and if an error occurs during proof translation then restart search in typed mode.
 - Restarts 17+3 times over all 1779+2024 subgoals.

Logical Interface First Order Calculus

Mapping Coverage

higher-order $\sqrt{}$ first-order \times

$$\vdash \forall f, s, a, b. (\forall x. f x = a) \land b \in \text{image } f s \implies (a = b)$$

$$(f \text{ has different arities})$$

$$\vdash \exists x. x \qquad (x \text{ is a predicate variable})$$

$$- \exists f. \forall x. f x = x$$
 (*f* is a function variable)

typed $\sqrt{}$ untyped \times

 $\begin{array}{ll} \vdash & \text{length} ([]: \mathbb{N}^*) = 0 \land \text{length} ([]: \mathbb{R}^*) = 0 \implies \\ & \text{length} ([]: \mathbb{R}^*) = 0 & \text{(indistinguishable terms)} \\ \vdash & \forall x. \text{ S K } x = \text{I} & \text{(extensionality applied too many times)} \\ \vdash & (\forall x. x = c) \implies a = b & \text{(bad proof via T = \bot)} \end{array}$

Logical Interface First Order Calculus

Equality And Completeness

- Suppose the higher order, typed mapping is used.
- Any λ-terms remaining after normalization are translated into combinators:

$$\begin{array}{l} P(\lambda x. x) \land \mathsf{Q} \implies \mathsf{Q} \land P(\lambda y. y) \\ \rightsquigarrow P I \land \mathsf{Q} \implies \mathsf{Q} \land P I \end{array}$$

- The definitions for the combinators are added as axioms.
- The following boolean equality theorems are also added:

$$\vdash \top \quad \vdash \neg \bot$$

$$\vdash \forall x, y. \neg x \lor (x \neq y) \lor y$$

$$\vdash \forall x, y. x \lor (x = y) \lor y$$

$$\vdash \forall x, y. \neg x \lor (x = y) \lor \neg y$$

Question: what is the exact coverage of this tactic?

First-Order Calculi

- Implemented ML versions of several first-order calculi.
 - Model elimination; resolution; the delta preprocessor.
 - Trivial reduction to our first-order primitive inferences.
- Can run them simultaneously using time slicing.
 - They cooperate by contributing to a central pool of unit clauses.
- Used HOL subgoals to guide the overall design.
 - For example, the focus on equality reasoning and fairly small clause sets.
- Used the TPTP problem collection to tune the parameters.
 - As a standalone prover, it comes mid-table when run on the problems drawn for two previous CASCs.

Model Elimination

- Similar search strategy (but not identical!) to MESON_TAC.
 - Equality is axiomatized.
- Incorporated three major optimizations:
 - Ancestor pruning (Loveland).
 - Unit lemmaizing (Astrachan and Stickel).
 - Divide & conquer searching (Harrison).
- Unit lemmaizing gave a big win.
 - The logical kernel made it easy to spot unit clauses.
 - Surprise: divide & conquer searching can occasionally prevent useful unit clauses being found!

Resolution

- Implements ordered resolution and ordered paramodulation.
- Powerful equality calculus allows proofs way out of MESON_TAC's range:

```
``(!x y. x*y = y*x) /\
  (!x y z. x*y*z = x*(y*z)) ==>
  a*b*c*d*e*f*g*h*i = i*h*g*f*e*d*c*b*a``
```

- Had to tweak it for HOL in two important ways:
 - Avoid paramodulation into a typed variable.
 - Sizes of clauses shouldn't include types.

Delta Preprocessor

- Schumann's idea: perform *shallow resolutions* on clauses before passing them to model elimination prover.
- Our version: for each predicate *P*/*n* in the goal, use model elimination to search for unit clauses of the form *P*(*X*₁,..., *X_n*) and ¬*P*(*Y*₁,..., *Y_n*).
- Doesn't directly solve the goal, but provides help in the form of unit clauses.

Logical Interface First Order Calculus

Evaluation on TPTP v2.4.1

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Current Work: Finite Models

- Slaney proposed using unsatifiability in a finite model as a clause weighting strategy.
- Slaney used finite models found with a constraint solver, but a positive effect can be observed just using random models.
- For a first order prover being used as a higher order logic tactic, it is possible to tailor make finite models that satisfy important theorems.
 - For example, the natural numbers modulo *n* satisfy most of Peano's axioms.
- Preliminary experiments have shown this to be an effective strategy, and it costs very little to randomly test clauses for satisfiability.

Summary

- Have given a tour of combining first order provers and interactive higher order logic theorem provers.
 - Focused on the problems that can occur at each step, and techniques for solving them.
- Moral: there are many interesting design choices to be made at the interface between the logics.
- The time is ripe for a successful combination of higher order logic theorem provers and first order provers.