
Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

First Order Proof for
Higher Order Logic Theorem Provers

Joe Hurd

Computing Laboratory
Oxford University

ESHOL Workshop
2 December 2005

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Talk Plan

1 Proof Tools for Interactive Theorem Provers
Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

2 Deploying First Order Provers in Higher Order Logic
Logical Interface
First Order Calculus

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

Interactive Theorem Provers

Interactive theorem provers are used to construct
mechanized versions of mathematical theories.

Many applications, including program verification,
formalization of mathematics, and analysis of language
semantics.
The expressivity of higher order logic makes it a popular
choice to be implemented by interactive theorem provers.

Higher order: HOL, Isabelle, PVS, Coq.
First order: ACL2, Mizar.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

LCF Design

Theorem provers with an LCF design emphasize logical
soundness.

Possibly at the cost of efficiency of execution.

Bad News for Proving: Every theorem (and intermediate
lemma) must be constructed by functions implementing the
primitive rules of the logic.

Good News for Proving: A full programming language is
provided to automate common patterns of reasoning.
In practice an LCF design rarely gets in the way of the
user.

Some proof tools may take longer because of it,
but the resulting theorems are high assurance.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

Interactive Proof: A How To

How to prove a statement S in an interactive theorem prover:
1 Set up S as an initial goal.

2 Select an automatic tactic that reduces the top goal to a
set of simpler subgoals.

3 Go back to step 2 until all subgoals have been proved.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

Tactics

Automatic tactics are “little engines of proof” that reduce
goals using primitive rules and simpler tactics.

They can be low level for precise work, such as reducing
the goal A ∧ B to the set of subgoals {A, B}.
Or they can be high level, such as a decision procedure
that proves all Presburger arithmetic formulas.

Why not embed a first order prover inside an automatic
tactic?

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

First Order Provers

Modern resolution provers are powerful tools.
Examples: Vampire, E, Spass, Gandalf.

Their design emphasizes coverage and speed of
execution.

Possibly at the cost of soundness.
Proofs found by a first order prover must be replayed by the
LCF kernel to become theorems of higher order logic.

Many first order provers are optimized for problems in the
TPTP collection, from which the annual competition
problems are drawn.

Larry Paulson has been contributing problems into TPTP
derived from Isabelle subgoals.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

First Order Logic Calculi

Resolution was invented by Alan Robinson in the 1960s,
and provers have been getting better ever since.

Not just Moore’s law! Many redundant inferences have
been eliminated from the first order logic calculus.
Ordered paramodulation has made a big improvement in
the handling of equality.

Equality reasoning plays a part in most goals of higher
order logic.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

Previous Combinations

This is not a new idea!

1991 FAUST in HOL

1994 SEDUCT in LAMBDA

1996 MESON in HOL

1998 3TAP in KIV

1999 blast in Isabelle

1999 Gandalf in HOL

2000 Bliksem in Coq

2002 Metis in HOL

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

MESON In HOL

Before Metis came along, MESON_TACwas the only first
order proof tool in HOL.

Based on the model elimination calculus.
Added to HOL in 1996 by John Harrison.

In 2002, building the core distribution of HOL used
MESON_TACto prove 1779 subgoals:

A further 2024 subgoals in the examples.

Clearly the kind of tool that users want.
And this is despite the fact that MESON_TAC is weak on
equality reasoning (equality is axiomatized).

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Interactive Higher Order Logic Theorem Provers
First Order Proof Tools

Gandalf In HOL

GANDALF_TAC is a HOL tactic that calls GANDALF.
Socket communications between HOL and GANDALF.
Added to HOL in 1999.

The first-order calculus is powerful,
and the C implementation is speedy.

But there is a lot of infrastructure to maintain,
and hard to tailor the first-order prover for HOL goals.

GANDALF_TAC is obsolete today. . .
. . . but maybe it was ahead of its time?

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Proof With A First Order Tactic: A How To

Here’s how to prove the higher order logic subgoal g:

1 Convert the negation of g to CNF; this results in a HOL
theorem of the form

` ¬g ⇐⇒ ∃~a. (∀ ~v1. c1) ∧ · · · ∧ (∀ ~vn. cn) (1)

2 Skolemize and map each HOL term ci to first-order logic:

C = {C1, . . . , Cn}

3 The first-order prover runs on C, and finds a refutation ρ.

4 The refutation ρ is translated to a HOL proof of the theorem

{(∀ ~v1. c1), . . . , (∀ ~vn. cn)} ` ⊥ (2)

5 Use theorems (1) and (2) to derive ` g.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Normalization: The Problem With CNF

Resolution provers accept input problems in CNF

But sometimes converting terms to CNF makes their size
explode:

CNF
(

(a0 ∧ a1 ∧ a2 ∧ a3) ∨ (b0 ∧ b1 ∧ b2 ∧ b3)∨
(c0 ∧ c1 ∧ c2 ∧ c3) ∨ (d0 ∧ d1 ∧ d2 ∧ d3)

)
=

(a3 ∨ b3 ∨ c3 ∨ d0) ∧ (a2 ∨ b3 ∨ c3 ∨ d0) ∧
(a1 ∨ b3 ∨ c3 ∨ d0) ∧ (a0 ∨ b3 ∨ c3 ∨ d0) ∧

. . . 992 more atoms . . .
(a0 ∨ b3 ∨ c3 ∨ d3) ∧ (a1 ∨ b3 ∨ c3 ∨ d3) ∧
(a2 ∨ b3 ∨ c3 ∨ d3) ∧ (a3 ∨ b3 ∨ c3 ∨ d3)

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Definitional CNF

Definitional CNF guarantees the size of normalized terms will
be linear in the size of original terms:

DEF_CNF
(

(a0 ∧ a1 ∧ a2 ∧ a3) ∨ (b0 ∧ b1 ∧ b2 ∧ b3) ∨
(c0 ∧ c1 ∧ c2 ∧ c3) ∨ (d0 ∧ d1 ∧ d2 ∧ d3)

)
=

∃ v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11.
(v11 ∨ ¬d0 ∨ ¬v10) ∧ (v10 ∨ ¬v11) ∧ (d0 ∨ ¬v11) ∧
(v10 ∨ ¬d1 ∨ ¬v9) ∧ (v9 ∨ ¬v10) ∧ (d1 ∨ ¬v10) ∧

. . . 59 more atoms . . .
(v0 ∨ ¬v1) ∧ (a1 ∨ ¬v1) ∧ (v0 ∨ ¬a2 ∨ ¬a3) ∧
(a3 ∨ ¬v0) ∧ (a2 ∨ ¬v0) ∧ (v2 ∨ v5 ∨ v8 ∨ v11)

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Definitional CNF by Inference

Given an input term t , it’s easy to generate the definitional
CNF normalized term t ′.

This allows a fast oracle implementation of normalization
into definitional CNF:

{ORACLE_SAYS} ` t ⇐⇒ t ′

Require a HOL proof that t and t ′ are logically equivalent:

` t ⇐⇒ t ′

This requires additional implementation effort and a slower
proof tool.

A rare case where the LCF design of HOL gets in the way.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Logical Interface

Another source of incompleteness is the logical interface
between higher and first order logic.

Cannot hope to be complete, but it’s annoying if the tactic
fails on ‘simple’ goals like these:

` ∃x . x
` P (λx . x) ∧Q =⇒ Q ∧ P (λy . y)

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Logical Interface

Can program versions of first-order calculi that work
directly on HOL terms.

But types (and λ’s) add complications;
and then the mapping from HOL terms to first-order logic is
hard-coded.

Would like to program versions of the calculi that work on
standard first-order terms, and have someone else worry
about the mapping to HOL terms.

Then coding is simpler and the mapping is flexible;
but how can we keep track of first-order proofs, and
automatically translate them to HOL?

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

First-order Logical Kernel

Use the ML type system to create an LCF-style logical kernel
for clausal first-order logic:

signature Kernel = sig
(* An ABSTRACT type for theorems *)
eqtype thm

(* Destruction of theorems is fine *)
val dest_thm : thm → formula list × proof

(* But creation is only allowed by these primitive rules *)
val AXIOM : formula list → thm
val REFL : term → thm
val ASSUME : formula → thm
val INST : subst → thm → thm
val FACTOR : thm → thm
val RESOLVE : formula → thm → thm → thm
val EQUALITY : formula → int list → term → bool → thm → thm

end

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Making Mappings Modular

The logical kernel keeps track of proofs, and allows the HOL
mapping to first-order logic to be modular:

signature Mapping =
sig

(* Mapping HOL goals to first-order logic *)
val map_goal : HOL.term → FOL.formula list

(* Translating first-order logic proofs to HOL *)
type Axiom_map = FOL.formula list → HOL.thm
val translate_proof : Axiom_map → Kernel.thm → HOL.thm

end

Implementations of Mapping simply provide HOL versions of
the primitive inference steps in the logical kernel, and then all
first-order theorems can be translated to HOL.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Type Information?

It is not necessary to include type information in the
mapping from HOL terms to first-order terms/formulas.

Principal types can be inferred when translating first-order
terms back to HOL.

This wouldn’t be the case if the type system was
undecidable (e.g., the PVS type system).

But for various reasons the untyped mapping occasionally
fails.

Examples coming up.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Four Mappings

Metis includes four mappings from HOL to first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping First-order formula
first-order, untyped n < n + 1
first-order, typed (n : N) < ((n : N) + (1 : N) : N)
higher-order, untyped ↑ ((< . n) . ((+ . n) . 1))
higher-order, typed
↑ (((< : N → N → B) . (n : N) : N → B) .

(((+ : N → N → N) . (n : N) : N → N) . (1 : N) : N) : B)

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Mapping Efficiency

Effect of the mapping on the time taken by model
elimination calculus to prove a HOL version of Łoś’s
‘nonobvious’ problem:

Mapping untyped typed
first-order 1.70s 2.49s
higher-order 2.87s 7.89s

These timing are typical, although 2% of the time
higher-order, typed does beat first-order, untyped.
We run in untyped mode, and if an error occurs during
proof translation then restart search in typed mode.

Restarts 17+3 times over all 1779+2024 subgoals.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Mapping Coverage

higher-order
√

first-order ×

` ∀f , s, a, b. (∀ x . f x = a) ∧ b ∈ image f s =⇒ (a = b)
(f has different arities)

` ∃x . x (x is a predicate variable)

` ∃f . ∀x . f x = x (f is a function variable)

typed
√

untyped ×

` length ([] : N∗) = 0 ∧ length ([] : R∗) = 0 =⇒
length ([] : R∗) = 0 (indistinguishable terms)

` ∀x . S K x = I (extensionality applied too many times)

` (∀x . x = c) =⇒ a = b (bad proof via> = ⊥)

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Equality And Completeness

Suppose the higher order, typed mapping is used.

Any λ-terms remaining after normalization are translated
into combinators:

P (λx . x) ∧Q =⇒ Q ∧ P (λy . y)
 P I ∧Q =⇒ Q ∧ P I

The definitions for the combinators are added as axioms.

The following boolean equality theorems are also added:

` > ` ¬⊥
` ∀x , y . ¬x ∨ (x 6= y) ∨ y
` ∀x , y . x ∨ (x = y) ∨ y
` ∀x , y . ¬x ∨ (x = y) ∨ ¬y

Question: what is the exact coverage of this tactic?

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

First-Order Calculi

Implemented ML versions of several first-order calculi.

Model elimination; resolution; the delta preprocessor.
Trivial reduction to our first-order primitive inferences.

Can run them simultaneously using time slicing.

They cooperate by contributing to a central pool of unit
clauses.

Used HOL subgoals to guide the overall design.
For example, the focus on equality reasoning and fairly
small clause sets.

Used the TPTP problem collection to tune the parameters.
As a standalone prover, it comes mid-table when run on the
problems drawn for two previous CASCs.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Model Elimination

Similar search strategy (but not identical!) to MESON_TAC.
Equality is axiomatized.

Incorporated three major optimizations:
Ancestor pruning (Loveland).
Unit lemmaizing (Astrachan and Stickel).
Divide & conquer searching (Harrison).

Unit lemmaizing gave a big win.
The logical kernel made it easy to spot unit clauses.
Surprise: divide & conquer searching can occasionally
prevent useful unit clauses being found!

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Resolution

Implements ordered resolution and ordered
paramodulation.
Powerful equality calculus allows proofs way out of
MESON_TAC’s range:
‘‘(!x y. x*y = y*x) /\

(!x y z. x*y*z = x*(y*z)) ==>
a*b*c*d*e*f*g*h*i = i*h*g*f*e*d*c*b*a‘‘

Had to tweak it for HOL in two important ways:
Avoid paramodulation into a typed variable.
Sizes of clauses shouldn’t include types.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Delta Preprocessor

Schumann’s idea: perform shallow resolutions on clauses
before passing them to model elimination prover.

Our version: for each predicate P/n in the goal, use model
elimination to search for unit clauses of the form
P(X1, . . . , Xn) and ¬P(Y1, . . . , Yn).

Doesn’t directly solve the goal, but provides help in the
form of unit clauses.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Evaluation on TPTP v2.4.1

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Current Work: Finite Models

Slaney proposed using unsatifiability in a finite model as a
clause weighting strategy.

Slaney used finite models found with a constraint solver,
but a positive effect can be observed just using random
models.
For a first order prover being used as a higher order logic
tactic, it is possible to tailor make finite models that satisfy
important theorems.

For example, the natural numbers modulo n satisfy most of
Peano’s axioms.

Preliminary experiments have shown this to be an effective
strategy, and it costs very little to randomly test clauses for
satisfiability.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

Proof Tools for Interactive Theorem Provers
Deploying First Order Provers in Higher Order Logic

Logical Interface
First Order Calculus

Summary

Have given a tour of combining first order provers and
interactive higher order logic theorem provers.

Focused on the problems that can occur at each step, and
techniques for solving them.

Moral: there are many interesting design choices to be
made at the interface between the logics.

The time is ripe for a successful combination of higher
order logic theorem provers and first order provers.

Joe Hurd First Order Proof for Higher Order Logic Theorem Provers

	Proof Tools for Interactive Theorem Provers
	Interactive Higher Order Logic Theorem Provers
	First Order Proof Tools

	Deploying First Order Provers in Higher Order Logic
	Logical Interface
	First Order Calculus

