Proof Pearl: The Termination Method of
TERMINATOR

Joe Hurd

Computing Laboratory
University of Oxford

University of Edinburgh
Thursday 9 August 2007

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Talk Plan

© Introduction

© Formalizing TERMINATOR
© Correctness Proof

@ Verifying Optimizations

e Summary

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Introduction
Motivation

Joe Hurd

“[...] Vista is the most secure operating
system we've ever done, and if it's
administered properly, absolutely, it can be
used to run a hospital or any kind of mission
critical thing.” Bill Gates, 1 Feb 2007

Proof Pearl: The Termination Method of TERMINATOR

TERMINATOR

@ If a Windows device driver goes into an infinite loop, the
whole computer can hang.

o TERMINATOR is a static analysis tool developed by
Microsoft Research to prove termination of device drivers,
typically thousands of lines of C code.

@ It works by modifying the program to transform the
termination problem into a safety property, which is then
proved by the SLAM tool.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Introduction

Transforming Termination to a Safety Property

Given a program location / and well-founded relations Ry, ..., R,
between program states at location /, insert

already_saved_state := false;

at the start of the program, and the following code just before /:

if (already_saved_state) {
if —(R; state saved_state V --- V R, state saved_state) {
error ("possible non-termination");
}
}
else if (¥) {
saved_state := state;
already_saved_state := true;

}

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Proving the Safety Property

Joe Hurd

@ SLAM is called to verify that the error statement is never
executed.

@ This guarantees that between the ith and jth time that
program location / is reached, the state goes down in at least
one of Ry, ..., Ry

o E.g., suppose Rj is mmmm R, s mmmm and R3 i memm:

.\. _. ./.
@ If this is true at all program locations it is possible to conclude
that the program must always terminate. This Proof Pearl!

Proof Pearl: The Termination Method of TERMINATOR

Introduction

Constructing Well-Founded Relations

Joe Hurd

The choice of well-founded relations is irrelevant for the
correctness proof.
TERMINATOR first calls SLAM with no relations.
e This proof will succeed if the program location is executed at

most once.
If the proof fails, SLAM will provide a counterexample
program trace.
An external tool heuristically synthesizes a well-founded
relation that would eliminate the counterexample trace.

This is added to the set of relations, and SLAM is called again.

Proof Pearl: The Termination Method of TERMINATOR

Introduction

TERMINATOR Example (1)

unsigned int A (unsigned int m, unsigned int n) {
/* Ackermann’s function
[Zum Hilbertschen Aufbau der reellen Zahlen, 1928] */
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Introduction

TERMINATOR Example (II)

unsigned int A (unsigned int m, unsigned int n) {
/* No relations
*/
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

SLAM Says: Counterexample trace (1,0) — (0,1)
Relation Synthesizer Says: R (m',n") (m,n) = m' < m

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Introduction

TERMINATOR Example (11I)

unsigned int A (unsigned int m, unsigned int n) {
/¥ Ro(m',n) (mn) = m < m
*/
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

SLAM Says: Counterexample trace (1,1) — (1,0)
Relation Synthesizer Says: R (m',n') (m,n) = n’ <n

—~~

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Introduction

TERMINATOR Example (1V)

unsigned int A (unsigned int m, unsigned int n) {
/¥ Ro(m',n) (mn) = m < m

Ry (m',n") (m,n) n < n*/
if (m == 0) { return n + 1; }
else if (n == 0) { return A (m - 1, 1); }
else { return A (m - 1, A (m, n - 1)); }

SLAM Says: Proved
TERMINATOR Says: Terminating

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Formalizing TERMINATOR
Programs

Model programs as a state transition system with an explicit
program counter.

Type Definition

('state, 'location) program =

<| states : 'state — bool,
location : 'state — 'location;

initial : 'state — bool

transition : 'state — 'state — bool |>

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Formalizing TERMINATOR
Well-Formed Programs

Well-formed programs have a finite text and stay within their state
space.

Constant Definition

programs =
{pl
finite (locations p) A
p.initial C p.states A
Vs,s'. p.transition s s’ = s € p.states A s’ € p.states }

where locations p = image p.location p.states.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Formalizing TERMINATOR

Terminating Programs

Define the set of program traces.

Constant Definition

traces p = { t | to € p.initial A Vi. p.transition t; ti+1 }

Terminating programs have no infinite traces.

Constant Definition

terminates p = Vt € traces p. finite t

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Formalizing TERMINATOR

The TERMINATOR Program Analysis (1)

Constant Definition

terminator_property_at_location p /| =
IR, n.
(Vk €{0,...,n— 1}. well_founded (R k)) A
Vt € traces p. Vx; < x; € trace_at_location p / t.
Jke{0,...,n—1}. Rk xj x;

where trace_at_location p [t = filter (As. p.location s = /) t.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Formalizing TERMINATOR

The TERMINATOR Program Analysis (I1)

Constant Definition

terminator_property p =

VI € locations p. terminator_property_at_location p /

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Correctness Proof
Deducing Termination

Recall the example with three well-founded relations,
where Ry is === Ry js mmmmm and Ry g mem:

Why should such a trace necessarily be finite?

Answer: Find a subtrace where all states are connected by a single
well-founded relation.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Correctness Proof
Ramsey Theory To The Rescue

e Named for Frank Plumpton Ramsey (1903-1930).

o A Cambridge mathematician who worked in logic, economics
and probability.

e He was Wittgenstein's Ph.D. supervisor!

@ Ramsey theory is about “finding order in chaos”.

o Ramsey created his theorem to prove a result in logic.
[On a problem of formal logic, 1930]

e It has been extended to many applications, e.g., high
dimensional noughts and crosses.

e Paul Erd6s used Ramsey Theory to tempt promising young
mathematicians into studying combinatorics.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Correctness Proof

Ramsey's Theorem (Infinite Graph Version)

Every infinite graph has an infinite subgraph that is either
complete or empty:

F VV,E.
infinite V —
M C V.
infinite M A
(VijjeM.i<j = Eij)V
(Vi,je M. i<j = =Eij))

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Correctness Proof

Ramsey's Theorem (Infinite Version)

Every complete infinite graph edge coloured with finitely many
colours has an infinite monochromatic subgraph:

- VYV,C,n.
infinite V. A
(Vi,jeV.3ke{0,..n-1}.i<j = Ckij) =
IM C V. 3k € {0,....n— 1}.
infinite M A Vi, jeEM.i<j = Ckij)

Put on your turquoise spectacles. O

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Correctness Proof

Verifying TERMINATOR (1)

At a program location p, colour the edge i < j with colour k if
R k x; x;.

Theorem

F Vp € programs. V/ € locations p.
terminator_property_at_location p | —
V't € traces p. finite (trace_at_location p / t)

Ramsey’s Theorem. O

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Verifying TERMINATOR (I1)

Any infinite program trace will visit some program location
infinitely often, so deduce the correctness of TERMINATOR.

- Vp € programs. terminator_property p —> terminates p

By colouring states on the program trace with their location, this
result can be seen as a 1-dimensional Ramsey theorem. [

V.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Verifying Optimizations

Optimization 1: Single Relation (1)

If there is only one relation TERMINATOR modifies the program
to simply compare states with previous states, by inserting

already_saved_state := false;

at the start of the program, and the following code just before /:

if (already_saved_state A —R state saved_state) {
error("possible non-termination");

saved_state := state;
already_saved_state := true;

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Verifying Optimizations

Optimization 1: Single Relation (I1)

To account for this optimization, the result of the TERMINATOR
program analysis must be weakened to:

Constant Definition

terminator_property_at_location p | =
(3R.
well_founded R A
V't € traces p. Vx;, x;+1 € trace_at_location p [t. R X1 X;) V
[.. old definition of terminator_property_at_location p /...]

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Verifying Optimizations

Optimization 2: Cut Sets

TERMINATOR finds well-founded relations only at a cut set of
program locations.

Constant Definition

cutsets p =
{ L] LClocations p A
Vt € traces p.
infinite t = 3/ € L. infinite (trace_at_location p / t)}

@ Being a cut set is a semantic property, and as hard to prove as
termination.

@ In practice, choose a set containing locations at the start of
all loops and functions that are called (mutually) recursively.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Verifying Optimizations

Optimized TERMINATOR Program Analysis

The optimized TERMINATOR program analysis guarantees:

Constant Definition

terminator_property p =
JC € cutsets p. VI € C. terminator_property_at_location p /

But the same correctness theorem is still true.

F Vp € programs. terminator_property p = terminates p

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

Summary

@ This talk has presented a formal verification of the
termination argument relied on by TERMINATOR.
@ The model of programs used is the simplest one that can
verify the termination argument.
@ The next step would be to add some program structure:
o the initial program transformation could be represented,;

e cut sets could be defined syntactically; and
e more TERMINATOR optimizations could be verified.

Joe Hurd Proof Pearl: The Termination Method of TERMINATOR

	Introduction
	Formalizing TERMINATOR
	Correctness Proof
	Verifying Optimizations
	Summary

