-

Probabilistic Guarded Commands
Mechanized in HOL

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle Mclver (Macquarie University) and
Carroll Morgan (University of New South Wales)

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.1/29

Contents

Introduction

Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator

Example Verifications

Conclusion

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.2/29

Introduction

o N

Probabilistic programs are useful for many applications:

e Symmetry breaking
Rabin’s mutual exclusion algorithm

e Eliminating pathological cases
Miller-Rabin primality test

e Algorithm complexity
Sorting nuts and bolts

e Defeating a powerful adversary
Mixed strategies in game theory

e Solving a problem in an extremely simple way
L Finding minimal cuts J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.3/29

Introduction: pGCL
-

pPpGCL stands for probabilistic Guarded Command
Language.

It's Dijkstra’'s GCL extended with probabilistic choice
C1 pD €2

Like GCL, the semantics is based on weakest
preconditions.

Important: retains demonic choice
c1 'l ¢y

Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994—

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.4/29

The HOL Theorem Prover
-

Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOLSS.

_atest release in mid-2002 called HOL4, developed
jointly by Cambridge, Utah and ANU.

mplements classical Higher-Order Logic with
Hindley-Milner polymorphism.

Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc. |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.5/29

Contents

-

e Introduction
. Formalizing Probabilistic
Guarded Commands

e wlp Verification Condition Generator
e Example Verifications
e Conclusion

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.6/29

pGCL Semantics
-

f e Given a standard program C and a postcondition @, let
P be the weakest precondition that satisfies

PlClQ)]

e Precondition P is weaker than P’ if P' = P.

e Such a P will always exist and be unique, so think of C
as a function that transforms postconditions into

weakest preconditions.

e PGCL generalizes this to probabilistic programs:
Conditions o — B become expectations o — posreal.
Expectation P is weaker than P' if P' C P.

L Think of programs as expectation transformers. J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.7/29

pGCL Commands

fModel pGCL commands with a HOL datatype: T
command = Assert of (state — posreal) x command
Abort
Skip

Assign of string X (state — Z)

Seq of command x command

Demon of command X command

Prob of (state — posreal) x command x command
While of (state — B) x command

Note: the probability in Prob can depend on the state.

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.8/29

Derived Commands

~ Define the following derived commands as syntactic sugar: |

v:i=e = Assighve
C1, C2 —_— Seq C1 C2
c1 M1 co = Demoncy o
c1 p® c2 = Prob (As. p)ci e
Condbcyco = Prob (As.if bsthen1else0) ¢y co
vi={el,....,en} = vi=e M- TTv:i=ey
vi=(er, ,6n) = vi=eq,® vi=(e2,...,en)
pr—c1| o |pp— o =
Abort If none of the p; hold on the current state
[Lic;ci wherel={i|1<¢<nAp;holds}

Lln addition, we write v := n + 1 instead of “v” := As. s “n” + 1.J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.9/29

Weakest Preconditions

fDefine weakest preconditions (wp) directly on commands: T

.

(wp (Assert p ¢) = wp ¢)
(wp Abort = Ar. Zero)
(wp Skip = Ar. 1)
(wp (Assign v e) = Ar;s. r (Aw. if w = v then e s else s w))
(wp (Seq c1 c2) = Ar.wp ¢y (wpca 7))
(wp (Demon ¢ ¢3) = Ar. Min (wp ¢1 1) (wp c2 7))
(wp (Prob p c1 ¢2) =

Ar,s.letx «— [psl<iinz(wperrs)+ (1 —x)(wpcars))
A (wp (While b ¢) =

Ar. expect_Ifp (Ae, s. if b s thenwp ce s else r s))

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.10/29

Weakest Preconditions: Example

o N

e The goal is to end up with variables i and j containing
the same value:

post = if 1 = j then 1 else 0.

e First program:

pd = i:=(0,1); j:= {0,1}

~ wp pd poOSt = Zero
e Second program:

dp = j:={0,1}; 7:=(0,1)
= wp dp post = As. 1/2.

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.11/29

Contents

o N

e Introduction
e Formalizing Probabilistic Guarded Commands

. wip Verification Condition
Generator

o Example Verifications
e Conclusion

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.12/29

Weakest Liberal Preconditions

o N

Weakest liberal conditions (wlp) model partial correctness.

= (wlp (Assert p ¢) = wlp ¢)
A (wlp Abort = Ar. Magic)
A (wlp Skip = Ar. 1)
A (wlp (Assign v e) = Ar, s. r (Aw. if w = v then e s else s w))
A (wlp (Seq ¢1 c2) = Ar. wlp ¢1 (wlp ca 1))
A (wlp (Demon ¢1 ¢2) = Ar. Min (wlp ¢1 1) (wlp c2 1))
A (wlp (Prob p ¢y o) =
Ar,s.letx «— [ps|<iinxz(wlpeprs)+ (1 —x)(wlpcars))
A (wlp (While b ¢) =
Ar. expect_gfp (Me, s. if b sthenwlp ce s elser s))

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.13/29

Weakest Liberal Preconditions: Example

o N

e We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop = While (As. T) Skip
e For any postcondition post, we have
~ wp loop post = Zero N wlp loop post = Magic
e These correspond to the Hoare triples

/L] loop [post] {T} loop {post}

as we would expect from an infinite loop.

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.14/29

Calculating wip Lower Bounds

o N

e Suppose we have a pGCL command c and a
postcondition g.

e We wish to derive a lower bound on the weakest liberal
precondition.

e Can think of this as the first-order query P C wlp ¢ g.
e Idea: use a Prolog interpreter to solve for the variable P.

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.15/29

Calculating wlp: Rules
- -

Example Rules:

e Magic C wilp Abort @)

e () C wlp Skip)

e RCwlp(Cy @ N PCwlpCi R =
P C wlp (Seq C7 C3) @

e PPCwpCi QO N PBCwlp(Cy Q) =
Min P, P> C wlp (Demon C Cs) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.16/29

Calculating wip: While Loops
f e We use the following theorem about While loops: T

- VP Q,b,c.
PCIfb(wlpcP)Q = PLCwlp (Whilebc)Q

e Cannot use in this form, because of the repeated
occurrence of P in the premise.

e Instead, provide a rule that requires an assertion:
RCwlpCP APCIfFBRQ =
P C wlp (Assert P (While B C)) @

e The second premise generates a verification condition
as an extra subgoal.

e It is left to the user to provide a useful loop invariant in
L the Assert around the while loop. J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.17/29

Contents

Introduction
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator

Example Verifications

Conclusion

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.18/29

Example: Monty Hall
f contestant switch = T

pc:=41,2,3};
cc:=(1,2,3);

pc#E1ANcc#1 — ac:=1
| pc#E2Ncc#£2 — ac:=2
| pc#E3ANcc#3 — ac:=3;
if —=switch then Skip else
cc:= (if cc#1ANac+#1thenl

else if cc # 2 A ac # 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

_ win = if cc = pc then 1 else 0. J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.19/29

.

Example: Monty Hall

Verification proceeds by:

-

1. Rewriting away all the syntactic sugatr.

2. Expanding the definition of wp.

3. Carrying out the numerical calculations.

After 22 seconds and 250536 primitive inferences in the

logical kernel:

— wp (contestant switch) win = As. if sSwitchthen 2/3 else 1/3

In other words, by switching the contestant is twice as

likely to win the prize.

Not trivial to do by hand, because the intermediate

expectations get rather large.

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.20/29

Example: Rabin Mutual Exclusion

o N

e Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical

section of code.

e The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.
e Could implement the coin tossing using

\— n:=0;b:=0; While(b=0) (n:=n+1; b:=(0,1)) J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.21/29

Example: Rabin Mutual Exclusion

o N

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

nitialize n with 1, the lowest number not yet considered.
f i = 1 then we have a unique winner: return SUCCESS.
f = 0 then the election has failed: return FAILURE.

Reduce ¢ by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

L 6. Increment n by 1, and jump to Step 3. J

o &~ Wb

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.22/29

Example: Rabin Mutual Exclusion

o N

The following pGCL program implements this data
refinement:
rabin = While (1 <) (
n:=1;
While (0 < n)
(d:=(0,1);1:=i—d; n:=n—1)
)

The desired postcondition representing a unique winner of
the election is

post = if t =1then1else

o |

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.23/29

Example: Rabin Mutual Exclusion

o N

e The precondition that we aim to show is

pre = if i =1 then 1elseif 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always

succeed.”

e Surprising: The probability of success is independent of
the number of processors.

e We formally verify the following statement of partial
correctness:

\— pre = wlp rabin post J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.24/29

Example: Rabin Mutual Exclusion

o N

e Need to annotate the While loops with invariants.
e The invariant for the outer loop is simply pre.
e For the inner loop we used

if 0 <n <ithen (2/3)*invarl i n + invar2 ¢ n else 0
where

invarl 1 n =
1 —(ift=nthen (n+1)/2" else if t = n + 1 then 1/2" else 0)

invar2 i n = if i = n thenn/2" else if i = n + 1 then 1/2" else 0

e Coming up with these was the hardest part of the
verification.

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.25/29

Example: Rabin Mutual Exclusion

o N

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.
2. Prove wlp rabin = wlp annotated_rabin
3. Use this to reduce the goal to

pre C wlp annotated_rabin post

4. This is in the correct form to apply the VC generator.
5. Finish off the VCs with 58 lines of HOL-4 proof script.

|— Leqg (\s. if s"i" = 1 then 1
else 1f 1 < gs"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.26/29

Contents

Introduction

Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator

Example Verifications

Conclusion

|

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.27/29

Conclusion
f e Formalized the theory of pGCL in higher-order logic. T

Definitional theory, so high assurance of consistency.
Created the first direct proof that wp semantics
always give healthy transformers.

e Created an automatic tool for deriving sufficient

conditions for partial correctness.

Useful product of mechanizing a program semantics.
Used in a verification of the probabilistic voting
scheme in Rabin’s mutual exclusion algorithm.

e HOL-4 well suited to this task.
Hard VCs can be passed to the user as subgoals.

LCF kernel enforces soundness, even though the VC
o generator tactic is a highly complex program. o

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.28/29

Related Work

e Formal methods for probabilistic programs:

-Hurd’s thesis, 2002.
Probabilistic invariants for probabilistic machines,
Hoang et. al., 2003.

Christine Paulin’s work in Coq, 2002.
Prism model checker, Kwiatkowska et. al., 2000—

e Mechanized program semantics:
Formalizing Dijkstra, Harrison, 1998.
Hoare Logics in Isabelle/HOL, Nipkow, 2001.
Mechanizing program logics in higher order logic,
Gordon, 1989.

A mechanically verified verification condition
generator, Homeier and Martin, 1995. J

Probabilistic Guarded Commands Mechanized in HOL — Joe Hurd — p.29/29

	Contents
	Introduction
	Introduction: pGCL
	The HOL Theorem Prover
	Contents
	pGCL Semantics
	pGCL Commands
	Derived Commands
	Weakest Preconditions
	Weakest Preconditions: Example
	Contents
	Weakest Liberal Preconditions
	Weakest Liberal Preconditions: Example
	Calculating $Wlp $ Lower Bounds
	Calculating $Wlp $: Rules
	Calculating $Wlp $: While Loops
	Contents
	Example: Monty Hall
	Example: Monty Hall
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Contents
	Conclusion
	Related Work

