Probabilistic Guarded Commands Mechanized in HOL

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)

Contents

Introduction

- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- Conclusion

Introduction

Probabilistic programs are useful for many applications:

- Symmetry breaking
 - Rabin's mutual exclusion algorithm
- Eliminating pathological cases
 - Miller-Rabin primality test
- Algorithm complexity
 - Sorting nuts and bolts
- Defeating a powerful adversary
 - Mixed strategies in game theory
- Solving a problem in an extremely simple way
 - Finding minimal cuts

Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It's Dijkstra's GCL extended with probabilistic choice

$c_1 \ _p \oplus \ c_2$

- Like GCL, the semantics is based on weakest preconditions.
- Important: retains demonic choice

$c_1 \sqcap c_2$

 Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.

Contents

Introduction

Formalizing Probabilistic Guarded Commands

- wlp Verification Condition Generator
- Example Verifications
- Conclusion

pGCL Semantics

• Given a standard program C and a postcondition Q, let P be the weakest precondition that satisfies

[P]C[Q]

- Precondition P is weaker than P' if $P' \Rightarrow P$.
- Such a *P* will always exist and be unique, so think of *C* as a function that transforms postconditions into weakest preconditions.
- pGCL generalizes this to probabilistic programs:
 - Conditions $\alpha \to \mathbb{B}$ become expectations $\alpha \to \text{posreal}$.
 - Expectation P is weaker than P' if $P' \sqsubseteq P$.
 - Think of programs as *expectation transformers*.

pGCL Commands

Model pGCL commands with a HOL datatype:

Note: the probability in Prob can depend on the state.

Derived Commands

Define the following *derived commands* as syntactic sugar:

 $v := e \equiv Assign v e$ $c_1 ; c_2 \equiv \text{Seq } c_1 c_2$ $c_1 \sqcap c_2 \equiv \text{Demon } c_1 c_2$ $c_1 \ _p \oplus \ c_2 \equiv \operatorname{Prob}(\lambda s. \ p) \ c_1 \ c_2$ Cond $b c_1 c_2 \equiv \text{Prob}(\lambda s. \text{ if } b s \text{ then } 1 \text{ else } 0) c_1 c_2$ $v := \{e_1, \dots, e_n\} \quad \equiv \quad v := e_1 \ \sqcap \ \cdots \ \sqcap \ v := e_n$ $v := \langle e_1, \cdots, e_n \rangle \equiv v := e_{1 1/n} \oplus v := \langle e_2, \dots, e_n \rangle$ $p_1 \to c_1 \mid \cdots \mid p_n \to c_n \equiv$ $\begin{cases} \text{Abort} & \text{if none of the } p_i \text{ hold on the current state} \\ \prod_{i \in I} c_i & \text{where } I = \{i \mid 1 \leq i \leq n \land p_i \text{ holds} \} \end{cases}$

In addition, we write v := n + 1 instead of "v" := $\lambda s. s$ "n" + 1.

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

 \vdash (wp (Assert p c) = wp c) \wedge (wp Abort = λr . Zero) \wedge (wp Skip = $\lambda r. r$) \wedge (wp (Assign v e) = $\lambda r, s. r (\lambda w. \text{ if } w = v \text{ then } e s \text{ else } s w$)) \wedge (wp (Seq $c_1 c_2$) = λr . wp c_1 (wp $c_2 r$)) \wedge (wp (Demon $c_1 c_2$) = λr . Min (wp $c_1 r$) (wp $c_2 r$)) \wedge (wp (Prob $p c_1 c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\mathsf{wp} \ c_1 \ r \ s) + (1 - x)(\mathsf{wp} \ c_2 \ r \ s))$ \wedge (wp (While b c) = λr . expect Ifp ($\lambda e, s$. if b s then wp c e s else r s))

Weakest Preconditions: Example

• The goal is to end up with variables *i* and *j* containing the same value:

post
$$\equiv$$
 if $i = j$ then 1 else 0.

• First program:

$$pd \equiv i := \langle 0, 1 \rangle ; \ j := \{0, 1\}$$
$$\vdash wp pd \textit{post} = Zero$$

• Second program:

$$dp \equiv j := \{0, 1\} ; i := \langle 0, 1 \rangle$$

$$\vdash wp dp post = \lambda s. 1/2.$$

Contents

- Introduction
- Formalizing Probabilistic Guarded Commands

wlp Verification Condition Generator

- Example Verifications
- Conclusion

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

 $(\mathsf{wlp} (\mathsf{Assert} \ p \ c) = \mathsf{wlp} \ c)$ \vdash \wedge (wlp Abort = λr . Magic) \wedge (wlp Skip = $\lambda r. r$) \wedge (wlp (Assign v e) = $\lambda r, s. r (\lambda w. \text{ if } w = v \text{ then } e s \text{ else } s w$)) $\wedge (\mathsf{wlp} (\mathsf{Seq} c_1 c_2) = \lambda r. \mathsf{wlp} c_1 (\mathsf{wlp} c_2 r))$ \wedge (wlp (Demon $c_1 c_2$) = λr . Min (wlp $c_1 r$) (wlp $c_2 r$)) \wedge (wlp (Prob $p c_1 c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\mathsf{wlp} \ c_1 \ r \ s) + (1 - x)(\mathsf{wlp} \ c_2 \ r \ s))$ \wedge (wlp (While b c) =

 $\lambda r. \text{ expect_gfp } (\lambda e, s. \text{ if } b \ s \text{ then wlp } c \ e \ s \text{ else } r \ s))$

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the simplest infinite loop:

```
loop \equiv While (\lambda s. \top) Skip
```

• For any postcondition *post*, we have

 \vdash wp loop *post* = Zero \land wlp loop *post* = Magic

• These correspond to the Hoare triples

 $[\bot] \operatorname{loop} [post] \qquad \{\top\} \operatorname{loop} \{post\}$

as we would expect from an infinite loop.

Calculating wlp Lower Bounds

- Suppose we have a pGCL command *c* and a postcondition *q*.
- We wish to derive a lower bound on the weakest liberal precondition.
- Can think of this as the first-order query $P \sqsubseteq wlp \ c \ q$.
- Idea: use a Prolog interpreter to solve for the variable *P*.

Calculating wlp: **Rules**

Example Rules:

- Magic \sqsubseteq wlp Abort Q
- $Q \sqsubseteq wlp Skip Q$
- $R \sqsubseteq wlp C_2 Q \land P \sqsubseteq wlp C_1 R \Rightarrow$ $P \sqsubseteq wlp (Seq C_1 C_2) Q$
- $P_1 \sqsubseteq \mathsf{wlp} \ C_1 \ Q \land P_2 \sqsubseteq \mathsf{wlp} \ C_2 \ Q \Rightarrow$ Min $P_1 \ P_2 \sqsubseteq \mathsf{wlp} \ (\mathsf{Demon} \ C_1 \ C_2) \ Q$

Note: the Prolog interpreter automatically calculates the 'middle condition' in a Seq command.

Calculating wlp: While Loops

• We use the following theorem about While loops:

 $\vdash \forall P, Q, b, c.$ $P \sqsubseteq \mathsf{lf} \ b \ (\mathsf{wlp} \ c \ P) \ Q \Rightarrow P \sqsubseteq \mathsf{wlp} \ (\mathsf{While} \ b \ c) \ Q$

- Cannot use in this form, because of the repeated occurrence of P in the premise.
- Instead, provide a rule that requires an assertion:
 - $R \sqsubseteq wlp \ C \ P \land P \sqsubseteq lf \ B \ R \ Q \Rightarrow$ $P \sqsubseteq wlp (Assert \ P (While \ B \ C)) \ Q$
- The second premise generates a *verification condition* as an extra subgoal.
- It is left to the user to provide a useful loop invariant in the Assert around the while loop.

Contents

- Introduction
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator

Example Verifications

Conclusion

Example: Monty Hall

contestant *switch* \equiv $pc := \{1, 2, 3\};$ $cc := \langle 1, 2, 3 \rangle$; $pc \neq 1 \land cc \neq 1 \rightarrow ac := 1$ $pc \neq 2 \land cc \neq 2 \rightarrow ac := 2$ $| pc \neq 3 \land cc \neq 3 \rightarrow ac := 3;$ if ¬*switch* then Skip else $cc := (if \ cc \neq 1 \land ac \neq 1 \text{ then } 1)$ else if $cc \neq 2 \land ac \neq 2$ then 2 else 3)

The postcondition is simply the desired goal of the contestant, i.e.,

win
$$\equiv$$
 if $cc = pc$ then 1 else 0.

Example: Monty Hall

- Verification proceeds by:
 - 1. Rewriting away all the syntactic sugar.
 - 2. Expanding the definition of wp.
 - 3. Carrying out the numerical calculations.
- After 22 seconds and 250536 primitive inferences in the logical kernel:
 - \vdash wp (contestant *switch*) win = λs . if *switch* then 2/3 else 1/3
- In other words, by switching the contestant is twice as likely to win the prize.
- Not trivial to do by hand, because the intermediate expectations get rather large.

- Suppose *N* processors are executing concurrently, and from time to time some of them need to enter a critical section of code.
- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing a leader who is permitted to enter the critical section:
 - 1. Each of the waiting processors repeatedly tosses a fair coin until a head is shown
 - 2. The processor that required the largest number of tosses wins the election.
 - 3. If there is a tie, then have another election.
- Could implement the coin tossing using n := 0; b := 0; While (b = 0) $(n := n + 1; b := \langle 0, 1 \rangle)$

For our verification, we do not model *i* processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

- 1. Initialize *i* with the number of processors waiting to enter the critical section who have just picked a number.
- 2. Initialize n with 1, the lowest number not yet considered.
- 3. If i = 1 then we have a unique winner: return SUCCESS.
- 4. If i = 0 then the election has failed: return FAILURE.
- 5. Reduce i by eliminating all the processors who picked the lowest number n (since certainly none of them won the election).
- 6. Increment n by 1, and jump to Step 3.

The following pGCL program implements this data refinement:

rabin \equiv While (1 < i) (n := i; While (0 < n) $(d := \langle 0, 1 \rangle$; i := i - d; n := n - 1))

The desired postcondition representing a unique winner of the election is

post
$$\equiv$$
 if $i = 1$ then 1 else 0

• The precondition that we aim to show is

```
pre \equiv if i = 1 then 1 else if 1 < i then 2/3 else 0
```

"For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce a unique winner is 2/3, except for the trivial case of one processor when it will always succeed."

- Surprising: The probability of success is independent of the number of processors.
- We formally verify the following statement of partial correctness:

 $pre \sqsubseteq wlp rabin post$

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply *pre*.
- For the inner loop we used

if $0 \le n \le i$ then (2/3) * invar1 i n + invar2 i n else 0

where

invar1 $i n \equiv$ $1 - (\text{if } i = n \text{ then } (n+1)/2^n \text{ else if } i = n+1 \text{ then } 1/2^n \text{ else } 0)$ invar2 $i n \equiv \text{if } i = n \text{ then } n/2^n \text{ else if } i = n+1 \text{ then } 1/2^n \text{ else } 0$

Coming up with these was the hardest part of the verification.

The verification proceeded as follows:

- 1. Create the annotated program annotated_rabin.
- 2. Prove wlp rabin = wlp annotated_rabin
- 3. Use this to reduce the goal to

pre \sqsubseteq wlp annotated_rabin *post*

4. This is in the correct form to apply the VC generator.5. Finish off the VCs with 58 lines of HOL-4 proof script.

Contents

- Introduction
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- Conclusion

Conclusion

- Formalized the theory of pGCL in higher-order logic.
 - Definitional theory, so high assurance of consistency.
 - Created the first direct proof that wp semantics always give healthy transformers.
- Created an automatic tool for deriving sufficient conditions for partial correctness.
 - Useful product of mechanizing a program semantics.
 - Used in a verification of the probabilistic voting scheme in Rabin's mutual exclusion algorithm.
- HOL-4 well suited to this task.
 - Hard VCs can be passed to the user as subgoals.
 - LCF kernel enforces soundness, even though the VC generator tactic is a highly complex program.

Related Work

- Formal methods for probabilistic programs:
 - Hurd's thesis, 2002.
 - Probabilistic invariants for probabilistic machines, Hoang et. al., 2003.
 - Christine Paulin's work in Coq, 2002.
 - Prism model checker, Kwiatkowska et. al., 2000-
- Mechanized program semantics:
 - Formalizing Dijkstra, Harrison, 1998.
 - Hoare Logics in Isabelle/HOL, Nipkow, 2001.
 - Mechanizing program logics in higher order logic, Gordon, 1989.
 - A mechanically verified verification condition generator, Homeier and Martin, 1995.