Probabilistic Guarded Commands Mechanized in HOL

Joe Hurd joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South Wales)

Contents

• **Introduction**

- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- Conclusion

Introduction

Probabilistic programs are useful for many applications:

- Symmetry breaking
	- Rabin's mutual exclusion algorithm
- Eliminating pathological cases
	- Miller-Rabin primality test
- Algorithm complexity
	- Sorting nuts and bolts
- Defeating a powerful adversary
	- Mixed strategies in game theory
- Solving ^a problem in an extremely simple way
	- **Finding minimal cuts**

Introduction: pGCL

- pGCL stands for probabilistic Guarded Command Language.
- It's Dijkstra's GCL extended with probabilistic choice

c_1 $_p\oplus$ c_2

- Like GCL, the semantics is based on weakest preconditions.
- Important: retains demonic choice

c_1 n c_2

• Developed by Morgan et al. in the Programming Research Group, Oxford, 1994–

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge, Utah and ANU.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has ^a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with ^a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.

Contents

•**Introduction**

• **Formalizing Probabilistic Guarded Commands**

- wlp Verification Condition Generator
- Example Verifications
- •**Conclusion**

pGCL Semantics

 $\bullet\,$ Given a standard program C and a postcondition $Q,$ let P be the weakest precondition that satisfies

$[P]C[Q]$

- Precondition P is weaker than P' if $P' \Rightarrow P$.
- Such a P will always exist and be unique, so think of C as ^a function that transforms postconditions into weakest preconditions.
- pGCL generalizes this to probabilistic programs:
	- Conditions $\alpha \to \mathbb{B}$ become expectations $\alpha \to$ posreal.
	- Expectation P is weaker than P' if $P' \sqsubseteq P$.
	- Think of programs as expectation transformers.

pGCL Commands

Model pGCL commands with ^a HOL datatype:

command $\mathtt{d} \quad \equiv \quad$ Assert of (state \rightarrow posreal) \times command | Abort | Skip Assign of string \times (state $\rightarrow \mathbb{Z}$) Seq of command \times command Demon of command \times command Prob of (state \rightarrow posreal) \times command \times command While of (state $\rightarrow \mathbb{B}$) \times command

Note: the probability in Prob can depend on the state.

Derived Commands

Define the following *derived commands* as syntactic sugar:

 $v := e$ \equiv Assign v e c_1 ; c_2 \equiv Seq c_1 c_2 c_1 \sqcap c_2 \equiv $\,$ Demon c_1 c_2 c_1 $_p\oplus$ c_2 $\quad \equiv \quad$ Prob $(\lambda s.\ p)\ c_1\ c_2$ $\mathsf{Cond}\;b\;c_1\;c_2\;\;\;\equiv\;\;\;\mathsf{Prob}\;(\lambda s.\; \mathsf{if}\; b\; s\;\mathsf{then}\;1\;\mathsf{else}\;0)\;c_1\;c_2$ $v:=\{e_1,\ldots,e_n\} \quad \equiv \quad v:=e_1\ \sqcap \ \cdots \ \sqcap \ v:=e_n$ $v := \langle e_1, \cdots, e_n \rangle \quad \equiv \quad v := e_{1} \; \mathbb{1}_{/n} \oplus \; v := \langle e_2, \ldots, e_n \rangle$ $p_1 \rightarrow c_1 \mid \cdots \mid p_n \rightarrow c_n \equiv$ (Abort if none of the p_i hold on the current state $\left\{ \begin{array}{ll} \prod_{i\in I} c_i & \text{where } I = \{i \mid 1 \leq i \leq n \wedge p_i \text{ holds} \} \end{array} \right.$

In addition, we write $v := n+1$ instead of " $v" := \lambda s. \ s$ " $n" + 1.$

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

 $\vdash\;\;$ (wp $({\sf Assert}\; p\; c) =$ wp $c)$ \wedge (wp Abort = λr . Zero) \wedge (wp Skip = $\lambda r.\; r)$ \wedge (wp (Assign v $e) = \lambda r, s.$ r ($\lambda w.$ if $w = v$ then e s else s $w))$ \wedge (wp (Seq c_1 c_2) = λr . wp c_1 (wp c_2 r)) \wedge (wp (Demon c_1 c_2) = λr . Min (wp c_1 r) (wp c_2 r)) \wedge (wp (Prob $p~c_1~c_2) =$ λr , s. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\text{wp } c_1 \ r \ s) + (1-x)(\text{wp } c_2 \ r \ s))$ \wedge (wp (While b c) $=$ λr . expect_lfp $(\lambda e, s.$ if $b \ s$ then wp $c \ e \ s$ else $r \ s))$

Weakest Preconditions: Example

• The goal is to end up with variables i and j containing the same value:

$$
post \equiv \text{if } i = j \text{ then } 1 \text{ else } 0.
$$

• First program:

$$
\mathsf{pd} \equiv i := \langle 0, 1 \rangle \; ; \; j := \{0, 1\}
$$
\n
$$
\vdash \mathsf{wp} \; \mathsf{pd} \; \mathsf{post} = \mathsf{Zero}
$$

• Second program:

$$
\mathsf{dp} \equiv j := \{0, 1\} ; i := \langle 0, 1 \rangle
$$

$$
\vdash \mathsf{wp} \; \mathsf{dpp} \; \mathsf{post} = \lambda s. \; 1/2.
$$

Contents

- •**Introduction**
- Formalizing Probabilistic Guarded Commands

• wlp **Verification Condition Generator**

- Example Verifications
- \bullet **Conclusion**

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

 $\vdash\;$ (wlp (Assert p $c)$ $=$ wlp $c)$ \wedge (wlp Abort = λr . Magic) \wedge (wlp Skip = $\lambda r.\; r)$ \land (wlp $(\mathsf{Assign}\; v\; e) = \lambda r, s.\; r\; (\lambda w.\; \mathsf{if}\; w = v\; \mathsf{then}\; e\; s\; \mathsf{else}\; s\; w))$ \wedge (wlp (Seq c_1 c_2) = λr . wlp c_1 (wlp c_2 r)) \wedge (wlp (Demon c_1 c_2) = λr . Min (wlp c_1 r) (wlp c_2 r)) \wedge (wlp (Prob $p~c_1~c_2) =$ $\lambda r, s$. let $x \leftarrow [p \ s]_{\leq 1}$ in $x(\text{wlp } c_1 \ r \ s) + (1-x)(\text{wlp } c_2 \ r \ s))$ \wedge (wlp (While b $c)$ $=$

 λr . expect_gfp $(\lambda e, s.$ if $b~s$ then wlp $c~e~s$ else $r~s))$

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the simplest infinite loop:

```
loop \equiv While (\lambda s. \top) Skip
```
• For any postcondition *post*, we have

 $\vdash \,$ wp loop ${post = \text{Zero} \, \wedge \,}$ wlp loop ${post = \text{Magic}}$

• These correspond to the Hoare triples

 \Box loop $\textcolor{blue}{|pos|}\qquad \{\top\}$ loop $\{\textcolor{blue}{post}\}$

as we would expect from an infinite loop.

Calculating wlp **Lower Bounds**

- Suppose we have a pGCL command c and a postcondition q .
- We wish to derive a lower bound on the weakest liberal precondition.
- Can think of this as the first-order query $P \sqsubseteq$ wlp c q .
- \bullet Idea: use a Prolog interpreter to solve for the variable P .

Calculating wlp**: Rules**

Example Rules:

- $\bullet~$ Magic \sqsubseteq wlp Abort Q
- $\bullet \ \ Q \sqsubseteq$ wlp Skip Q
- \bullet $R \sqsubseteq$ wlp C_2 $Q \;\wedge\; P \sqsubseteq$ wlp C_1 $R \; \Rightarrow$ $P \sqsubseteq$ wlp (Seq C_1 C_2) Q
- \bullet $\;P_1 \sqsubseteq$ wlp $C_1 \;Q \;\wedge\; P_2 \sqsubseteq$ wlp $C_2 \;Q \;\Rightarrow\;$ Min P_1 P_2 \sqsubseteq wlp (Demon C_1 C_2) Q

Note: the Prolog interpreter automatically calculates the 'middle condition' in ^a Seq command.

Calculating wlp**: While Loops**

• We use the following theorem about While loops:

 $\vdash \forall P, Q, b, c.$ $P \sqsubseteq$ If b (wlp c $P)$ $Q \Rightarrow$ $P \sqsubseteq$ wlp (While b $c)$ Q

- Cannot use in this form, because of the repeated occurrence of P in the premise.
- Instead, provide ^a rule that requires an assertion:
	- \bullet $R \sqsubseteq$ wlp C $P \;\wedge\; P \sqsubseteq$ If B R $Q \implies$ $P \sqsubseteq$ wlp (Assert P (While B $C)$) Q
- The second premise generates a verification condition as an extra subgoal.
- It is left to the user to provide a useful loop invariant in the Assert around the while loop.

Contents

- •**Introduction**
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- •**Example Verifications**
- Conclusion

Example: Monty Hall

contestant $\textit{switch} \, \equiv$ $pc := \{1, 2, 3\}$; $cc := \langle 1, 2, 3\rangle$; $pc \neq 1 \wedge cc \neq 1 \rightarrow ac := 1$ $pc \neq 2 \wedge cc \neq 2 \rightarrow ac := 2$ $pc \neq 3 \wedge cc \neq 3 \rightarrow ac := 3 ;$ if ¬*switch* then Skip else $cc := (\mathsf{if}\; cc \neq 1 \land ac \neq 1$ then 1 else if $cc\neq 2 \wedge ac \neq 2$ then 2 else $3)$

The postcondition is simply the desired goal of the contestant, i.e.,

win
$$
\equiv
$$
 if $cc = pc$ then 1 else 0.

Example: Monty Hall

- Verification proceeds by:
	- 1. Rewriting away all the syntactic sugar.
	- 2. Expanding the definition of wp.
	- 3. Carrying out the numerical calculations.
- After 22 seconds and 250536 primitive inferences in the logical kernel:
	- $\vdash \,$ wp (contestant $\,$ swit $\,$ c $\,$ h $\,)$ win $= \lambda s.$ if $\,$ swit $\,$ c $\,$ h $\,$ then $2/3$ else $1/3$
- In other words, by switching the contestant is twice as likely to win the prize.
- Not trivial to do by hand, because the intermediate expectations get rather large.

- Suppose N processors are executing concurrently, and from time to time some of them need to enter a critical section of code.
- The mutual exclusion algorithm of Rabin (1982, 1992) works by electing ^a leader who is permitted to enter the critical section:
	- 1. Each of the waiting processors repeatedly tosses ^a fair coin until a head is shown
	- 2. The processor that required the largest number of tosses wins the election.
	- 3. If there is ^a tie, then have another election.
- Could implement the coin tossing using $n := 0 \; ; \; b := 0 \; ; \; \mathsf{While} \; (b = 0) \; (n := n+1 \; ; \; b := \langle 0, 1 \rangle)$

For our verification, we do not model i processors concurrently executing the above voting scheme, but rather the following data refinement of that system:

- 1. Initialize i with the number of processors waiting to enter the critical section who have just picked ^a number.
- 2. Initialize n with 1, the lowest number not yet considered.
- 3. If $i = 1$ then we have a unique winner: return Success.
- 4. If $i=0$ then the election has failed: return FAILURE.
- 5. Reduce i by eliminating all the processors who picked the lowest number n (since certainly none of them won the election).
- 6. Increment n by 1, and jump to Step 3.

The following pGCL program implements this data refinement:

> rabin \equiv While $(1 < i)$ ($n := i \; ;$ While $(0 < n)$ $(d := \langle 0, 1 \rangle ; i := i - d ; n := n - 1)$)

The desired postcondition representing ^a unique winner of the election is

$$
\textit{post} \ \equiv \ \text{if} \ \textit{i} = 1 \ \text{then} \ 1 \ \text{else} \ 0
$$

•The precondition that we aim to show is

```
pre \equiv if i = 1 then 1 else if 1 < i then 2/3 else 0
```
"For any positive number of processors wanting to enter the critical section, the probability that the voting scheme will produce ^a unique winner is ²/³, except for the trivial case of one processor when it will always succeed."

- Surprising: The probability of success is independent of the number of processors.
- We formally verify the following statement of partial correctness:

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ rabin post

- Need to annotate the While loops with invariants.
- The invariant for the outer loop is simply pre.
- For the inner loop we used

if $0\leq n\leq i$ then $(2/3)*$ invar 1 i $n+$ invar 2 i n else 0

where

invar 1 i n \equiv $1 -$ (if $i = n$ then $(n + 1)/2^n$ else if $i = n + 1$ then $1/2^n$ else $0)$ invar2 i $n~\equiv~$ if $i = n$ then $n/2^n$ else if $i = n+1$ then $1/2^n$ else 0

• Coming up with these was the hardest part of the verification.

The verification proceeded as follows:

- 1. Create the annotated program annotated_rabin.
- 2. Prove wlp rabin $=$ wlp annotated_rabin
- 3. Use this to reduce the goal to

 $\mathsf{pre} \sqsubseteq \mathsf{wlp}$ annotated rabin post

4. This is in the correct form to apply the VC generator. 5. Finish off the VCs with 58 lines of HOL-4 proof script.

$$
|- \text{ Leg } (\text{ls. if } s"i" = 1 \text{ then } 1
$$

else if $1 < s"i" \text{ then } 2/3 \text{ else } 0)$
(wlp rabin (<\text{ls. if } s"i" = 1 \text{ then } 1 \text{ else } 0))

Contents

- •**Introduction**
- Formalizing Probabilistic Guarded Commands
- wlp Verification Condition Generator
- Example Verifications
- **Conclusion**

Conclusion

- Formalized the theory of pGCL in higher-order logic.
	- Definitional theory, so high assurance of consistency.
	- Created the first direct proof that wp semantics always give healthy transformers.
- Created an automatic tool for deriving sufficient conditions for partial correctness.
	- Useful product of mechanizing ^a program semantics.
	- Used in a verification of the probabilistic voting scheme in Rabin's mutual exclusion algorithm.
- HOL-4 well suited to this task.
	- Hard VCs can be passed to the user as subgoals.
	- LCF kernel enforces soundness, even though the VC generator tactic is ^a highly complex program.

Related Work

- Formal methods for probabilistic programs:
	- Hurd's thesis, 2002.
	- Probabilistic invariants for probabilistic machines, Hoang et. al., 2003.
	- Christine Paulin's work in Coq, 2002.
	- Prism model checker, Kwiatkowska et. al., 2000–
- Mechanized program semantics:
	- Formalizing Dijkstra, Harrison, 1998.
	- Hoare Logics in Isabelle/HOL, Nipkow, 2001.
	- Mechanizing program logics in higher order logic, Gordon, 1989.
	- A mechanically verified verification condition generator, Homeier and Martin, 1995.