
Probabilistic Guarded Commands
Mechanized in HOL

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle McIver (Macquarie University) and
Carroll Morgan (University of New South Wales)

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.1/29

Contents

• Introduction
• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example Verifications

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.2/29

Introduction

Probabilistic programs are useful for many applications:

• Symmetry breaking
• Rabin’s mutual exclusion algorithm

• Eliminating pathological cases
• Miller-Rabin primality test

• Algorithm complexity
• Sorting nuts and bolts

• Defeating a powerful adversary
• Mixed strategies in game theory

• Solving a problem in an extremely simple way
• Finding minimal cuts

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.3/29

Introduction: pGCL

• pGCL stands for probabilistic Guarded Command
Language.

• It’s Dijkstra’s GCL extended with probabilistic choice

c1 p⊕ c2

• Like GCL, the semantics is based on weakest
preconditions.

• Important: retains demonic choice

c1 u c2

• Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994–

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.4/29

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release in mid-2002 called HOL4, developed
jointly by Cambridge, Utah and ANU.

• Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

• Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

• Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.5/29

Contents

• Introduction

• Formalizing Probabilistic
Guarded Commands
• wlp Verification Condition Generator

• Example Verifications

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.6/29

pGCL Semantics

• Given a standard program C and a postcondition Q, let
P be the weakest precondition that satisfies

[P]C[Q]

• Precondition P is weaker than P ′ if P ′ ⇒ P .

• Such a P will always exist and be unique, so think of C
as a function that transforms postconditions into
weakest preconditions.

• pGCL generalizes this to probabilistic programs:
• Conditions α→ B become expectations α→ posreal.
• Expectation P is weaker than P ′ if P ′ v P .
• Think of programs as expectation transformers.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.7/29

pGCL Commands

Model pGCL commands with a HOL datatype:

command ≡ Assert of (state→ posreal)× command

| Abort

| Skip

| Assign of string × (state→ Z)

| Seq of command× command

| Demon of command× command

| Prob of (state→ posreal)× command× command

| While of (state→ B)× command

Note: the probability in Prob can depend on the state.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.8/29

Derived Commands
Define the following derived commands as syntactic sugar:

v := e ≡ Assign v e

c1 ; c2 ≡ Seq c1 c2

c1 u c2 ≡ Demon c1 c2

c1 p⊕ c2 ≡ Prob (λs. p) c1 c2

Cond b c1 c2 ≡ Prob (λs. if b s then 1 else 0) c1 c2

v := {e1, . . . , en} ≡ v := e1 u · · · u v := en

v := 〈e1, · · · , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉
p1 → c1 | · · · | pn → cn ≡{

Abort if none of the pi hold on the current state∏
i∈I ci where I = {i | 1 ≤ i ≤ n ∧ pi holds}

In addition, we write v := n+ 1 instead of “v” := λs. s “n” + 1.
Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.9/29

Weakest Preconditions
Define weakest preconditions (wp) directly on commands:

` (wp (Assert p c) = wp c)

∧ (wp Abort = λr. Zero)

∧ (wp Skip = λr. r)

∧ (wp (Assign v e) = λr, s. r (λw. if w = v then e s else s w))

∧ (wp (Seq c1 c2) = λr. wp c1 (wp c2 r))

∧ (wp (Demon c1 c2) = λr. Min (wp c1 r) (wp c2 r))

∧ (wp (Prob p c1 c2) =

λr, s. let x← [p s]≤1 in x(wp c1 r s) + (1− x)(wp c2 r s))

∧ (wp (While b c) =

λr. expect_lfp (λe, s. if b s then wp c e s else r s))

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.10/29

Weakest Preconditions: Example

• The goal is to end up with variables i and j containing
the same value:

post ≡ if i = j then 1 else 0.

• First program:

pd ≡ i := 〈0, 1〉 ; j := {0, 1}
` wp pd post = Zero

• Second program:

dp ≡ j := {0, 1} ; i := 〈0, 1〉
` wp dp post = λs. 1/2.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.11/29

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition
Generator
• Example Verifications

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.12/29

Weakest Liberal Preconditions

Weakest liberal conditions (wlp) model partial correctness.

` (wlp (Assert p c) = wlp c)

∧ (wlp Abort = λr. Magic)

∧ (wlp Skip = λr. r)

∧ (wlp (Assign v e) = λr, s. r (λw. if w = v then e s else s w))

∧ (wlp (Seq c1 c2) = λr. wlp c1 (wlp c2 r))

∧ (wlp (Demon c1 c2) = λr. Min (wlp c1 r) (wlp c2 r))

∧ (wlp (Prob p c1 c2) =

λr, s. let x← [p s]≤1 in x(wlp c1 r s) + (1− x)(wlp c2 r s))

∧ (wlp (While b c) =

λr. expect_gfp (λe, s. if b s then wlp c e s else r s))

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.13/29

Weakest Liberal Preconditions: Example

• We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop ≡ While (λs. >) Skip

• For any postcondition post , we have

` wp loop post = Zero ∧ wlp loop post = Magic

• These correspond to the Hoare triples

[⊥] loop [post] {>} loop {post}

as we would expect from an infinite loop.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.14/29

Calculating wlp Lower Bounds

• Suppose we have a pGCL command c and a
postcondition q.

• We wish to derive a lower bound on the weakest liberal
precondition.

• Can think of this as the first-order query P v wlp c q.

• Idea: use a Prolog interpreter to solve for the variable P .

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.15/29

Calculating wlp: Rules

Example Rules:

• Magic v wlp Abort Q

• Q v wlp Skip Q

• R v wlp C2 Q ∧ P v wlp C1 R ⇒
P v wlp (Seq C1 C2) Q

• P1 v wlp C1 Q ∧ P2 v wlp C2 Q ⇒
Min P1 P2 v wlp (Demon C1 C2) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.16/29

Calculating wlp: While Loops

• We use the following theorem about While loops:

` ∀P,Q, b, c.
P v If b (wlp c P) Q⇒ P v wlp (While b c) Q

• Cannot use in this form, because of the repeated
occurrence of P in the premise.

• Instead, provide a rule that requires an assertion:
• R v wlp C P ∧ P v If B R Q ⇒
P v wlp (Assert P (While B C)) Q

• The second premise generates a verification condition
as an extra subgoal.

• It is left to the user to provide a useful loop invariant in
the Assert around the while loop.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.17/29

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example Verifications
• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.18/29

Example: Monty Hall
contestant switch ≡
pc := {1, 2, 3} ;

cc := 〈1, 2, 3〉 ;

pc 6= 1 ∧ cc 6= 1 → ac := 1

| pc 6= 2 ∧ cc 6= 2 → ac := 2

| pc 6= 3 ∧ cc 6= 3 → ac := 3 ;

if ¬switch then Skip else

cc := (if cc 6= 1 ∧ ac 6= 1 then 1

else if cc 6= 2 ∧ ac 6= 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

win ≡ if cc = pc then 1 else 0.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.19/29

Example: Monty Hall

• Verification proceeds by:
1. Rewriting away all the syntactic sugar.
2. Expanding the definition of wp.
3. Carrying out the numerical calculations.

• After 22 seconds and 250536 primitive inferences in the
logical kernel:

` wp (contestant switch) win = λs. if switch then 2/3 else 1/3

• In other words, by switching the contestant is twice as
likely to win the prize.

• Not trivial to do by hand, because the intermediate
expectations get rather large.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.20/29

Example: Rabin Mutual Exclusion

• Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical
section of code.

• The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.

• Could implement the coin tossing using
n := 0 ; b := 0 ; While (b = 0) (n := n+ 1 ; b := 〈0, 1〉)

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.21/29

Example: Rabin Mutual Exclusion

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

2. Initialize n with 1, the lowest number not yet considered.

3. If i = 1 then we have a unique winner: return SUCCESS.

4. If i = 0 then the election has failed: return FAILURE.

5. Reduce i by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

6. Increment n by 1, and jump to Step 3.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.22/29

Example: Rabin Mutual Exclusion

The following pGCL program implements this data
refinement:

rabin ≡ While (1 < i) (

n := i ;

While (0 < n)

(d := 〈0, 1〉 ; i := i− d ; n := n− 1)

)

The desired postcondition representing a unique winner of
the election is

post ≡ if i = 1 then 1 else 0

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.23/29

Example: Rabin Mutual Exclusion

• The precondition that we aim to show is

pre ≡ if i = 1 then 1 else if 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always
succeed.”

• Surprising: The probability of success is independent of
the number of processors.

• We formally verify the following statement of partial
correctness:

pre v wlp rabin post

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.24/29

Example: Rabin Mutual Exclusion

• Need to annotate the While loops with invariants.

• The invariant for the outer loop is simply pre.

• For the inner loop we used

if 0 ≤ n ≤ i then (2/3) ∗ invar1 i n+ invar2 i n else 0

where

invar1 i n ≡
1− (if i = n then (n+ 1)/2n else if i = n+ 1 then 1/2n else 0)

invar2 i n ≡ if i = n then n/2n else if i = n+ 1 then 1/2n else 0

• Coming up with these was the hardest part of the
verification.

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.25/29

Example: Rabin Mutual Exclusion

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.

2. Prove wlp rabin = wlp annotated_rabin

3. Use this to reduce the goal to

pre v wlp annotated_rabin post

4. This is in the correct form to apply the VC generator.

5. Finish off the VCs with 58 lines of HOL-4 proof script.

|- Leq (\s. if s"i" = 1 then 1

else if 1 < s"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.26/29

Contents

• Introduction

• Formalizing Probabilistic Guarded Commands

• wlp Verification Condition Generator

• Example Verifications

• Conclusion

Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.27/29

Conclusion

• Formalized the theory of pGCL in higher-order logic.
• Definitional theory, so high assurance of consistency.
• Created the first direct proof that wp semantics

always give healthy transformers.

• Created an automatic tool for deriving sufficient
conditions for partial correctness.
• Useful product of mechanizing a program semantics.
• Used in a verification of the probabilistic voting

scheme in Rabin’s mutual exclusion algorithm.

• HOL-4 well suited to this task.
• Hard VCs can be passed to the user as subgoals.
• LCF kernel enforces soundness, even though the VC

generator tactic is a highly complex program.
Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.28/29

Related Work

• Formal methods for probabilistic programs:
• Hurd’s thesis, 2002.
• Probabilistic invariants for probabilistic machines,

Hoang et. al., 2003.
• Christine Paulin’s work in Coq, 2002.
• Prism model checker, Kwiatkowska et. al., 2000–

• Mechanized program semantics:
• Formalizing Dijkstra, Harrison, 1998.
• Hoare Logics in Isabelle/HOL, Nipkow, 2001.
• Mechanizing program logics in higher order logic,

Gordon, 1989.
• A mechanically verified verification condition

generator, Homeier and Martin, 1995.
Probabilistic Guarded Commands Mechanized in HOL – Joe Hurd – p.29/29

	Contents
	Introduction
	Introduction: pGCL
	The HOL Theorem Prover
	Contents
	pGCL Semantics
	pGCL Commands
	Derived Commands
	Weakest Preconditions
	Weakest Preconditions: Example
	Contents
	Weakest Liberal Preconditions
	Weakest Liberal Preconditions: Example
	Calculating $Wlp $ Lower Bounds
	Calculating $Wlp $: Rules
	Calculating $Wlp $: While Loops
	Contents
	Example: Monty Hall
	Example: Monty Hall
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Contents
	Conclusion
	Related Work

