
Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified Elliptic Curve Cryptography

Joe Hurd

Computing Laboratory
University of Oxford

Cambridge University
Tuesday 13 March 2007

Joe Hurd Formally Verified Elliptic Curve Cryptography 1 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Talk Plan

1 Introduction

2 Formalized Elliptic Curves

3 (Towards) Verified Implementations

4 Summary

Joe Hurd Formally Verified Elliptic Curve Cryptography 2 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Critical application, so need to go beyond bug finding to
assurance of correctness.

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

Joe Hurd Formally Verified Elliptic Curve Cryptography 4 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code

Joe Hurd Formally Verified Elliptic Curve Cryptography 5 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Verification Flow

A formal specification of elliptic curve operations derived from
mathematics (Hurd, Cambridge). This talk!

A verifying compiler from higher order logic functions to a low
level assembly language (Slind & Li, Utah).

A verifying back-end targeting ARM assembly programs
(Tuerk, Cambridge).

An assertion language for ARM assembly programs
(Myreen, Cambridge).

A very high fidelity model of the ARM instruction set derived
from a processor model (Fox, Cambridge).

The whole verification takes place in the HOL4 theorem prover.

Joe Hurd Formally Verified Elliptic Curve Cryptography 6 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Assumptions and Guarantees

Assumptions that must be checked by humans:

Specification: The formalized theory of elliptic curve
cryptography is faithful to standard mathematics. This talk!
Model: The formalized ARM machine code is faithful to the
real world execution environment.

Guarantee provided by formal methods:

The resultant block of ARM machine code faithfully
implements an elliptic curve cryptographic algorithm.
Functional correctness + a security guarantee.

Of course, there is also an implicit assumption that the HOL4
theorem prover is working correctly.

Joe Hurd Formally Verified Elliptic Curve Cryptography 7 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Y 2 + Y = X 3 − X

Joe Hurd Formally Verified Elliptic Curve Cryptography 9 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formalized Elliptic Curves

Formalized theory of elliptic curves mechanized in the HOL4
theorem prover.

Currently about 7500 lines of ML, comprising:

1000 lines of custom proof tools;
6000 lines of definitions and theorems; and
500 lines of example operations.

Complete up to the theorem that elliptic curve arithmetic
forms an Abelian group.

Formalizing this highly abstract theorem will add evidence
that the specification is correct. . .

. . . but is anyway required for functional correctness of elliptic
curve cryptographic operations.

Joe Hurd Formally Verified Elliptic Curve Cryptography 10 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Assurance of the Specification

How can evidence be gathered to check whether the formal
specification of elliptic curve cryptography is correct?

1 Comparing the formalized version to a standard mathematics
textbook.

2 Deducing properties known to be true of elliptic curves.

3 Deriving checkable calculations for example curves.

The elliptic curve specification can be checked using all three
methods.

Joe Hurd Formally Verified Elliptic Curve Cryptography 11 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Source Material

The primary way to demonstrate that the specification of
elliptic curve cryptography is correct is by comparing it to
standard mathematics.

The definitions of elliptic curves, rational points and elliptic
curve arithmetic that we present come from the source
textbook for the formalization (Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel Smart.)

A guiding design goal of the formalization is that it should be
easy for an evaluator to see that the formalized definitions are
a faithful translation of the textbook definitions.

Joe Hurd Formally Verified Elliptic Curve Cryptography 12 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Negation of Elliptic Curve Points

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Formally Verified Elliptic Curve Cryptography 13 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Checking the Spec 1: Comparison with the Textbook

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition

curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

“− P1 = (x1,−y1 − a1x1 − a3)”

Joe Hurd Formally Verified Elliptic Curve Cryptography 14 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Checking the Spec 2: Deducing Known Properties

Negation maps points on the curve to points on the curve.

Theorem

` ∀e ∈ Curve. ∀p ∈ curve_points e.
curve_neg e p ∈ curve_points e

Joe Hurd Formally Verified Elliptic Curve Cryptography 15 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Checking the Spec 3: Example Calculations

Example elliptic curve from a textbook exercise (Koblitz 1987).

Example

ec = curve (GF 751) 0 0 1 750 0

` ec ∈ Curve

` affine (GF 751) [361; 383] ∈ curve_points ec

` curve_neg ec (affine (GF 751) [361; 383]) =
affine (GF 751) [361; 367]

` affine (GF 751) [361; 367] ∈ curve_points ec

Joe Hurd Formally Verified Elliptic Curve Cryptography 16 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

The Elliptic Curve Group

Still need to complete the proof that elliptic curve arithmetic forms
an Abelian group:

Constant Definition

curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |>

Complete apart from the challenge problem of associativity.

There’s a light at the end of the tunnel: Recently Thèry has
formalized a proof of associativity in the Coq theorem prover.

Joe Hurd Formally Verified Elliptic Curve Cryptography 17 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Executable Higher Order Logic

The first step of the verification flow is an elliptic curve
cryptography library in the following executable subset of higher
order logic:

The only supported types are tuples of (Fox) word32s.

A fixed set of supported word operations.

Functions must be first order and tail recursive.

Joe Hurd Formally Verified Elliptic Curve Cryptography 19 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Elliptic Curve Cryptography Example 0

To test the machinery, we have defined a tiny elliptic curve
cryptography library implementing ElGamal encryption using the
example curve

Y 2 + Y = X 3 − X

over the field GF(751).

Constant Definition

add_mod_751 (x : word32, y : word32) =
let z = x + y in
if z < 751 then z else z - 751

Joe Hurd Formally Verified Elliptic Curve Cryptography 20 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Testing In C

Tuerk has created a prototype that emits a set of functions in the
HOL subset as a C library, for testing purposes.

Code

word32 add_mod_751 (word32 x, word32 y) {
word32 z;

z = x + y;

word32 t;

if (z < 751) {
t = z;

} else {
t = z - 751;

}
return t;

}

Joe Hurd Formally Verified Elliptic Curve Cryptography 21 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Hoare Triples for Real Machine Code

Real processors have exceptions, finite memory, and status
flags.

It’s still possible to specify machine code programs using
Hoare triples.

But specifying all the things that don’t change makes them
difficult to read and prove.

Myreen uses the ∗ operator of separation logic to create Hoare
triples that obey the frame rule:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

Joe Hurd Formally Verified Elliptic Curve Cryptography 22 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified ARM Implementation

Using Slind & Li’s compiler with Tuerk’s back-end targeting
Myreen’s Hoare triples for Fox’ ARM machine code:

Theorem

` ∀rv1 rv0.

ARM_PROG

(R 0w rv0 * R 1w rv1 * ~S)

(MAP assemble

[ADD AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

CMP AL 0w (Dp_shift_immediate (LSL 1w) 0w); B LT 3w;

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

SUB AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

B AL 16777215w])

(R 0w (add_mod_751 (rv0,rv1)) * ~R 1w * ~S)

Joe Hurd Formally Verified Elliptic Curve Cryptography 23 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Formally Verified Netlist Implementation

Iyoda has a verifying hardware compiler that accepts the same
HOL subset as Slind & Li’s compiler.

It generates a formally verified netlist ready to be synthesized:

Theorem
` InfRise clk =⇒

(∃v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10.

DTYPE T (clk,load,v3) ∧ COMB $~ (v3,v2) ∧
COMB (UNCURRY $∧) (v2 <> load,v1) ∧ COMB $~ (v1,done) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v8) ∧ CONSTANT 751w v7 ∧
COMB (UNCURRY $<) (v8 <> v7,v6) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v5) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v10) ∧ CONSTANT 751w v9 ∧
COMB (UNCURRY $-) (v10 <> v9,v4) ∧
COMB (λ(sw,in1,in2). (if sw then in1 else in2))

(v6 <> v5 <> v4,v0) ∧ ∃v. DTYPE v (clk,v0,out)) ==>

DEV add_mod_751

(load at clk,(inp1 <> inp2) at clk,done at clk,out at clk)

Joe Hurd Formally Verified Elliptic Curve Cryptography 24 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Results So Far

So far only initial results—both verifying compilers need
extending to handle full elliptic curve cryptography examples.

The ARM compiler can compile simple 32 bit field operations.

The hardware compiler can compile field operations with any
word length, but with 320 bit numbers the synthesis tool runs
out of FPGA gates.

Joe Hurd Formally Verified Elliptic Curve Cryptography 25 / 27

Introduction Formalized Elliptic Curves (Towards) Verified Implementations Summary

Summary

This talk has given a status report of the effort to generate
formally verified elliptic curve cryptography in ARM machine
code.

There’s much work still to be done to complete the effort, and
more cryptographic algorithms to be included (ECDSA).

The hardware compiler provides another verified
implementation platform, and it would be interesting to
extend the C output to generate reference implementations in
other languages (e.g., Cryptol).

Joe Hurd Formally Verified Elliptic Curve Cryptography 27 / 27

	Introduction
	Formalized Elliptic Curves
	(Towards) Verified Implementations
	Summary

