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Cryptol

Cryptol is a domain specific language for cryptographic
applications.

Developed by Galois Connections, Inc. since 2002.

Programs can be executed by the Cryptol (symbolic)
interpreter.

Or compiled to low-level software or hardware.
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Semantics

What is the meaning of a Cryptol program?

To use Cryptol as a stepping stone in Evaluation Assurance
Level 7 (EAL7) of the Common Criteria, must model Cryptol
programs in a formal logic.

The Cryptol program can then be formally proved equivalent
to a specification or low-level implementation modelled in the
same logic.
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Higher Order Logic

Higher order logic is a natural choice for modelling Cryptol
programs.

The type system is a close match with Cryptol’s.

It is a ‘wide-spectrum’ logic, thus also able to model the
specification and/or low-level implementation.

No need to defend linking two logics in the evaluation case.

Example: verifying a Cryptol implementation of elliptic curve
cryptography.
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Semantic Fidelity

Cryptol has nested mutually recursive sequences.

These are potentially infinite data structures.

OK: HOL4 already has a theory of lazy lists.

They can contain complex dependencies—evaluating an
element might result in program divergence.

Warning: Higher order logic functions are total.

Warning: Cryptol’s type system is more fine-grained than
higher order logic.
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Verification of Embedded Programs

Assume we have a semantically faithful embedding of Cryptol
into higher order logic.

How easy is it to prove properties of the embedded programs?

Rule of thumb: the more ‘natural’ the embedded programs,
the easier to verify.

‘Natural’ example 1: only terminating Cryptol programs.
‘Natural’ example 2: encoding sequence length information in
higher order logic types.

Tradeoff: More natural embedding = fewer embeddable
Cryptol programs.

SHA1 : [N] → [160]
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Deep and Shallow Embeddings
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Li & Slind (2005)

Shallow Embedding of Cryptol into HOL4.

Cryptol sequences are embedded as HOL4 lazy lists.

Cryptol sequence operations (split, join, etc.) can be
uniformly defined in higher order logic.

Arithmetic operations convert finite subsequences of boolean
lazy lists to HOL4 words.

Syntactic sugar for finite and infinite ranges.

A definition principle for a particular form of terminating
mutually recursive sequences.
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Matthews (2005)

Deep Embedding of fCryptol into Isabelle/HOL.

fCryptol is a subset of µCryptol.

Finite and infinite sequences of signed bitvectors have
different types.

Defines an abstract syntax of fCryptol, including mutually
recursive sequence definitions.

The denotational semantics assigns nonterminating sequences
a default value.
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Matthews (mid-2006)

Shallow Embedding of µCryptol into Isabelle/HOLCF.

HOLCF is an extension of HOL with first-class support for
partial functions.

Mutually recursive sequences are embedded as partial
functions.

Proving interesting properties require additional proof
obligations that expressions terminate.

Also contains a shallow embedding of the ACL2 logic.

Can be used to verify the initial phases of the verifying
µCryptol compiler mcc.
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What is a Natural Embedding?

What is the most natural embedding of Cryptol into higher
order logic?

Correlated question: How can Cryptol programs be embedded
to simplify reasoning about the resulting programs?

Note that this might involve a severe restriction on
embeddable Cryptol programs.

First step: restrict to terminating Cryptol programs, and
embed as native higher order logic functions.

Second step: how much information can be encoded in higher
order logic types?
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Infinite and Finite Length Sequences

Embed infinite α-sequences as

α inf ≡ N → α .

Embed finite α-sequences of length n as

α vector ≡ τn → α

where τn is a specially constructed type having n elements.

Every sequence in an embedded Cryptol program carries
around its length as part of its type.

No need for side-conditions about infinite or finite sequence
length in theorems: good for verification!
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Sequence Operations

Using Harrison’s finite Cartesian products it’s possible to
define sequence operations that are polymorphic over τn.

Need finite and infinite versions of the standard sequence
operations:

seq map finite : (α → β) → [n]α → [n]β

seq map infinite : (α → β) → [inf]α → [inf]β

In practice map to standard Cryptol syntax: the HOL4 parser
disambiguates by input argument type.

Joe Hurd Embedding Cryptol in Higher Order Logic 17 / 21



Introduction Existing Embeddings A Natural Embedding Summary

Sequence Comprehensions

Consider a Cryptol implementation of the Fibonacci sequence:

fib = [0 1] # [| x + y || x <- drop (1,fib) || y <- fib |]

The sequence comprehension can be embedded into higher
order logic as

map (λ(x , y). x + y) (zip (drop 1 fib) fib) .

Print zip using the µCryptol symbol |, and introduce a new
binder syntax for map:

(seq (x , y). x + y) (drop 1 fib | fib)
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Mutually Recursive Sequences

Two step procedure:
1 Define the sequences as functions N → α.
2 Prove them equivalent to the syntax supplied by the user.

Just an extension of Slind’s recursive function definition
package TFL.

Fibonacci example:
1 fib i ≡ if i < 2 then V[0w ; 1w ] %% i else fib (i − 1) + fib (i − 2) .
2 ` fib = V[0w ; 1w ] # (seq (x , y). x + y) (drop 1 fib | fib) .

Compare with the Cryptol implementation:

fib = [0 1] # [| x + y || x <- drop (1,fib) || y <- fib |]
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Summary

Motivated and surveyed existing approaches to embedding
Cryptol in higher order logic.

Presented a new approach aimed at simplifying verification of
embedded programs.

So far only know that it can scale to naturally embed TEA.

The ‘right embedding’ will surely depend on the particular
reasoning task to be performed, and will borrow ideas from all
approaches.
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