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Computer Algebra in Theorem Provers

Introduction

Computer algebra systems: Mathematica, Maple, etc.

(Interactive) theorem provers: HOL, Isabelle, etc.

Both process mathematical expressions, and can calculate

either with numbers or symbolic terms.

@ Both can be used to aid mathematicians:

o Computer algebra systems are routinely used for testing
conjectures at an early stage.

e Theorem provers offer a gold standard of proof; especially
important in cases where a purported proof is too long to be
checked by humans (e.g., the four colour theorem, Kepler's
conjecture).
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Computer Algebra in Theorem Provers

Complementary Differences

e Speed
e HOL is implemented in Standard ML, Mathematica in “an
object oriented variant of C".
o LCF style theorem provers impose a performance penalty: even
term construction often requires object logic type checking.
e Rewriting cannot compete with specialized algorithms.
e Example: polynomial arithmetic (we'll see this later).
o Reliability
e Most theorem provers emphasize logical soundness.
e Most computer algebra systems will cut corners.
e Example: when integrating x” most computer algebra systems
will return x"*1/(n + 1), but this is wrong for n = —1.
o Counterexample: Michael Beeson's MathXPert system for
teaching students.
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Computer Algebra in Theorem Provers

Another Difference

o Usability
o Computer algebra systems are task-oriented, and are generally
fully automatic.
e Theorem provers support the task of interactive proof, but
inexperienced users easily get stuck.
e Is this a failure of theorem prover design, or does it just reflect
the greater complexity of the task?
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Computer Algebra in Theorem Provers
Computer Algebra Techniques in Theorem Proving

@ Use a computer algebra system as an oracle.
o Needs careful handling to avoid unsoundness.

@ Use the computer algebra system to compute a witness for
the problem, and then verify it in the theorem prover.

e Sound, but not all problems fit into the model.
© Implement computer algebra techniques as derived rules.
e Sound, covers all problems, but might be inefficient.

@ Implement computer algebra algorithms and data structures
as HOL functions, prove them correct and execute them in
the theorem prover.

o Sound and efficient (same complexity), but very hard.
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Computer Algebra in Theorem Provers
Combination Projects

Using the categories of the previous slide:

@ OpenMath, MathML, MathWeb, and more
Theorema (Buchberger et. al.) & Analytica (Clarke et. al.)
Coding theory formalization (Ballarin & Paulson)

@ Primality certificates (Harrison & Théry, Caprotti)

© Computer algebra techniques in HOL Light (Harrison)
Computer algebra system in HOL Light (Kaliszyk & Wiedijk)
Abstract algebra (the rest of this talk)

© Buchberger's algorithm (Théry)
Cylindrical Algebraic Decomposition (Mahboubi)

For many others look at the Calculemus conference proceedings.
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Verifying Elliptic Curve Addition
Elliptic Curves

@ An elliptic curve over a field K is the set of points (x,y) € K?
satisfying a Weierstrass equation of the form

E: y2+alxy+33y:x3+agx2+a4x+a6

where a; € K, plus a special point at infinity O.

@ It's possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.
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Verifying Elliptic Curve Addition

The Elliptic Curve y? = x3 — x: Addition
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Verifying Elliptic Curve Addition

Verifying Elliptic Curve Addition

@ Algebraic formulas are provided for adding and negating
points.
@ The goal is to show that elliptic curve addition forms an
Abelian group.
e Adding and negating points on E results in points on E.
o Addition is associative: (p; + p2) + p3 = p1 + (P2 + p3).
o Addition is commutative: p; + p» = p2 + p1.
@ The rest of the talk will describe some computer algebra
techniques implemented as derived rules that were developed
to attack this goal.
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Adding a point on the curve to itself results on a point on the
curve:

Ve € Curve. Vp € curve_points e.
curve_double e p € curve_points e

(13 symbols)
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 1: Expand definition of curve equation and point doubling

y? %% 2 + e.al * x? *x y’ + e.a3 x y’ =
X’ %% 3 + e.a2 * x’ ** 2 + e.ad *x x’ + e.ab

Curve

e.field.carrier

e.field.carrier

field_nonzero e.field

(3% x *xk 2+ 2%e.a2 xx+e.ad-e.al xy)/d
= ("(x **x 3) + e.ad * x + 2 *x e.ab - e.a3 xy) / d
?=1 %k 2 +e.al *x1 -e.a2 - 2 *x x

>’ ="(1l +e.al) *x x> -m - e.ad

=2 %y +e.al x x + e.a3

** 2 + e,al * x * y + e.ad3 xy =

¥k 3 + e.a2 * x ** 2 + e.ad x x + e.ab

'mmmm

© 00 N U WN O
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(347 symbols)
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 2: Expand local definitions of all variables except the
denominator d.

The goal is now of the form
(polynomial) [x,y] =0 = (rational function) [x,y,d] =0

(1,445 symbols)
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 3: Eliminate the division by d by lifting it to the top level
and then expand the definition of d.

The goal is now of the form
(polynomial) [x,y] =0 == (polynomial) [x,y] =0
(2,690 symbols)

Optimization: When lifting a/b + ¢/d, must compute the
polynomial gcd of b and d to keep the resulting term size down.
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Verifying Elliptic Curve Addition

Elliptic Curve Grobner Basis

@ Want to replace the elliptic curve polynomial with a set of
normalizing rewrites: a Grobner basis.

@ This is a trivial case of Buchberger's Algorithm.

o Give x a larger weight than y and write the equation as
3 _ 2 2
x> = —ag + asy + y° — asx + aixy — asx (%)
@ Multiply everything out, replacing

X" = x3x"73 (n>3)

and reducing x> with the simplifying rewrite () above.
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Verifying Elliptic Curve Addition

Elliptic Curve Grobner Basis

Joe Hurd

@ Optimization: Precompute
x" = (polynomial) [x, y]

for all powers of n that are needed, simplifying the right hand
side so that it has no powers of x larger than 2.

@ For the point doubling running example, x? is needed.

@ The right hand sides can get quite large: x° ‘simplifies’ to a
term with 5,000 symbols.
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 4: Replace the elliptic curve polynomial with the normalizing
rewrites x' = ---.

The goal is now of the form
(rewrites) = (polynomial) [x,y] =0

(15,573 symbols)
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Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 5: Multiply out the polynomial, and reduce using the
normalizing rewrites. Finally cancel terms to obtain the trival goal

0=0

That's the theory, anyway. Unfortunately, in practice the
normalization takes way too long.

(>300,000 symbols)
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Verifying Elliptic Curve Addition

Tips for Efficient Handling of Large Terms in HOL

Or: Four things | wish I'd known when | started

@ Give the HOL pretty printer your own print functions (using
temp_add_user_printer) to make the output as readable as
possible. Cut off terms that are too big.

@ Make the simplifier work for you, by giving it simple rewrites
and custom decision procedures for solving side conditions.

© For complex normalization tasks add custom conversions to
the simplifier, and stop it from descending into subterms
matching P by giving it the null congruence rule P = P.

@ Writing correct normalization conversions is difficult: they
tend to have corner cases that are hard to predict. The only
way to be sure: repeatedly normalize until nothing changes!
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Summary

@ This talk has surveyed different ways of using computer
algebra techniques and systems to support theorem proving,
illustrating each combination method with past and current
projects.

@ A collection of proof tools to support abstract algebra in HOL
was also presented, and demonstrated on a subgoal of the
thorny problem to verify elliptic curve addition.

@ Future work is clear: improve the proof tools until the whole
verification can be completed. Suggestions welcome!
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