Computer Algebra Systems and Theorem Provers

Joe Hurd

Computer Laboratory
University of Cambridge

ARG Lunch
Wednesday 5 July 2006

Joe Hurd Computer Algebra Systems and Theorem Provers

Talk Plan

@ Computer Algebra in Theorem Provers
© Verifying Elliptic Curve Addition

© Summary

Joe Hurd Computer Algebra Systems and Theorem Provers

Computer Algebra in Theorem Provers

Introduction

Computer algebra systems: Mathematica, Maple, etc.

(Interactive) theorem provers: HOL, Isabelle, etc.

Both process mathematical expressions, and can calculate

either with numbers or symbolic terms.

@ Both can be used to aid mathematicians:

o Computer algebra systems are routinely used for testing
conjectures at an early stage.

e Theorem provers offer a gold standard of proof; especially
important in cases where a purported proof is too long to be
checked by humans (e.g., the four colour theorem, Kepler's
conjecture).

Joe Hurd Computer Algebra Systems and Theorem Provers 4/23

Computer Algebra in Theorem Provers

Complementary Differences

e Speed
e HOL is implemented in Standard ML, Mathematica in “an
object oriented variant of C".
o LCF style theorem provers impose a performance penalty: even
term construction often requires object logic type checking.
e Rewriting cannot compete with specialized algorithms.
e Example: polynomial arithmetic (we'll see this later).
o Reliability
e Most theorem provers emphasize logical soundness.
e Most computer algebra systems will cut corners.
e Example: when integrating x” most computer algebra systems
will return x"*1/(n + 1), but this is wrong for n = —1.
o Counterexample: Michael Beeson's MathXPert system for
teaching students.

Joe Hurd Computer Algebra Systems and Theorem Provers 5/23

Computer Algebra in Theorem Provers

Another Difference

o Usability
o Computer algebra systems are task-oriented, and are generally
fully automatic.
e Theorem provers support the task of interactive proof, but
inexperienced users easily get stuck.
e Is this a failure of theorem prover design, or does it just reflect
the greater complexity of the task?

Joe Hurd Computer Algebra Systems and Theorem Provers 6 /23

Computer Algebra in Theorem Provers
Computer Algebra Techniques in Theorem Proving

@ Use a computer algebra system as an oracle.
o Needs careful handling to avoid unsoundness.

@ Use the computer algebra system to compute a witness for
the problem, and then verify it in the theorem prover.

e Sound, but not all problems fit into the model.
© Implement computer algebra techniques as derived rules.
e Sound, covers all problems, but might be inefficient.

@ Implement computer algebra algorithms and data structures
as HOL functions, prove them correct and execute them in
the theorem prover.

o Sound and efficient (same complexity), but very hard.

Joe Hurd Computer Algebra Systems and Theorem Provers 7/23

Computer Algebra in Theorem Provers
Combination Projects

Using the categories of the previous slide:

@ OpenMath, MathML, MathWeb, and more
Theorema (Buchberger et. al.) & Analytica (Clarke et. al.)
Coding theory formalization (Ballarin & Paulson)

@ Primality certificates (Harrison & Théry, Caprotti)

© Computer algebra techniques in HOL Light (Harrison)
Computer algebra system in HOL Light (Kaliszyk & Wiedijk)
Abstract algebra (the rest of this talk)

© Buchberger's algorithm (Théry)
Cylindrical Algebraic Decomposition (Mahboubi)

For many others look at the Calculemus conference proceedings.

Joe Hurd Computer Algebra Systems and Theorem Provers 8/23

Verifying Elliptic Curve Addition
Elliptic Curves

@ An elliptic curve over a field K is the set of points (x,y) € K?
satisfying a Weierstrass equation of the form

E: y2+alxy+33y:x3+agx2+a4x+a6

where a; € K, plus a special point at infinity O.

@ It's possible to ‘add’ two points on an elliptic curve to get a
third point on the curve.

Joe Hurd Computer Algebra Systems and Theorem Provers 10 / 23

Verifying Elliptic Curve Addition

The Elliptic Curve y? = x3 — x: Addition

Joe Hurd Computer Algebra Systems and Theorem Provers 11 /23

Verifying Elliptic Curve Addition

Verifying Elliptic Curve Addition

@ Algebraic formulas are provided for adding and negating
points.
@ The goal is to show that elliptic curve addition forms an
Abelian group.
e Adding and negating points on E results in points on E.
o Addition is associative: (p; + p2) + p3 = p1 + (P2 + p3).
o Addition is commutative: p; + p» = p2 + p1.
@ The rest of the talk will describe some computer algebra
techniques implemented as derived rules that were developed
to attack this goal.

Joe Hurd Computer Algebra Systems and Theorem Provers 12 /23

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Adding a point on the curve to itself results on a point on the
curve:

Ve € Curve. Vp € curve_points e.
curve_double e p € curve_points e

(13 symbols)

Joe Hurd Computer Algebra Systems and Theorem Provers 13 /23

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 1: Expand definition of curve equation and point doubling

y? %% 2 + e.al * x? *x y’ + e.a3 x y’ =
X’ %% 3 + e.a2 * x’ ** 2 + e.ad *x x’ + e.ab

Curve

e.field.carrier

e.field.carrier

field_nonzero e.field

(3% x *xk 2+ 2%e.a2 xx+e.ad-e.al xy)/d
= ("(x **x 3) + e.ad * x + 2 *x e.ab - e.a3 xy) / d
?=1 %k 2 +e.al *x1 -e.a2 - 2 *x x

>’ ="(1l +e.al) *x x> -m - e.ad

=2 %y +e.al x x + e.a3

** 2 + e,al * x * y + e.ad3 xy =

¥k 3 + e.a2 * x ** 2 + e.ad x x + e.ab

'mmmm

© 00 N U WN O
MG Aad X B HAa<d XK o

(347 symbols)

Joe Hurd Computer Algebra Systems and Theorem Provers

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 2: Expand local definitions of all variables except the
denominator d.

The goal is now of the form
(polynomial) [x,y] =0 = (rational function) [x,y,d] =0

(1,445 symbols)

Joe Hurd Computer Algebra Systems and Theorem Provers 15 / 23

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 3: Eliminate the division by d by lifting it to the top level
and then expand the definition of d.

The goal is now of the form
(polynomial) [x,y] =0 == (polynomial) [x,y] =0
(2,690 symbols)

Optimization: When lifting a/b + ¢/d, must compute the
polynomial gcd of b and d to keep the resulting term size down.

Joe Hurd Computer Algebra Systems and Theorem Provers 16 / 23

Verifying Elliptic Curve Addition

Elliptic Curve Grobner Basis

@ Want to replace the elliptic curve polynomial with a set of
normalizing rewrites: a Grobner basis.

@ This is a trivial case of Buchberger's Algorithm.

o Give x a larger weight than y and write the equation as
3 _ 2 2
x> = —ag + asy + y° — asx + aixy — asx (%)
@ Multiply everything out, replacing

X" = x3x"73 (n>3)

and reducing x> with the simplifying rewrite () above.

Joe Hurd Computer Algebra Systems and Theorem Provers 17 / 23

Verifying Elliptic Curve Addition

Elliptic Curve Grobner Basis

Joe Hurd

@ Optimization: Precompute
x" = (polynomial) [x, y]

for all powers of n that are needed, simplifying the right hand
side so that it has no powers of x larger than 2.

@ For the point doubling running example, x? is needed.

@ The right hand sides can get quite large: x° ‘simplifies’ to a
term with 5,000 symbols.

Computer Algebra Systems and Theorem Provers 18 / 23

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 4: Replace the elliptic curve polynomial with the normalizing
rewrites x' = ---.

The goal is now of the form
(rewrites) = (polynomial) [x,y] =0

(15,573 symbols)

Joe Hurd Computer Algebra Systems and Theorem Provers 19 / 23

Verifying Elliptic Curve Addition

Case Study: Point Doubling

Stage 5: Multiply out the polynomial, and reduce using the
normalizing rewrites. Finally cancel terms to obtain the trival goal

0=0

That's the theory, anyway. Unfortunately, in practice the
normalization takes way too long.

(>300,000 symbols)

Joe Hurd Computer Algebra Systems and Theorem Provers 20 /23

Verifying Elliptic Curve Addition

Tips for Efficient Handling of Large Terms in HOL

Or: Four things | wish I'd known when | started

@ Give the HOL pretty printer your own print functions (using
temp_add_user_printer) to make the output as readable as
possible. Cut off terms that are too big.

@ Make the simplifier work for you, by giving it simple rewrites
and custom decision procedures for solving side conditions.

© For complex normalization tasks add custom conversions to
the simplifier, and stop it from descending into subterms
matching P by giving it the null congruence rule P = P.

@ Writing correct normalization conversions is difficult: they
tend to have corner cases that are hard to predict. The only
way to be sure: repeatedly normalize until nothing changes!

Joe Hurd Computer Algebra Systems and Theorem Provers 21 /23

Summary

@ This talk has surveyed different ways of using computer
algebra techniques and systems to support theorem proving,
illustrating each combination method with past and current
projects.

@ A collection of proof tools to support abstract algebra in HOL
was also presented, and demonstrated on a subgoal of the
thorny problem to verify elliptic curve addition.

@ Future work is clear: improve the proof tools until the whole
verification can be completed. Suggestions welcome!

Joe Hurd Computer Algebra Systems and Theorem Provers 23 /23

	Computer Algebra in Theorem Provers
	Verifying Elliptic Curve Addition
	Summary

