Computer Algebra Systems and Theorem Provers

Joe Hurd

Computer Laboratory University of Cambridge

ARG Lunch Wednesday 5 July 2006

Talk Plan

1 Computer Algebra in Theorem Provers

2 Verifying Elliptic Curve Addition

Introduction

- Computer algebra systems: Mathematica, Maple, etc.
- (Interactive) theorem provers: HOL, Isabelle, etc.
- Both process mathematical expressions, and can calculate either with numbers or symbolic terms.
- Both can be used to aid mathematicians:
 - Computer algebra systems are routinely used for testing conjectures at an early stage.
 - Theorem provers offer a gold standard of proof; especially important in cases where a purported proof is too long to be checked by humans (e.g., the four colour theorem, Kepler's conjecture).

Complementary Differences

Speed

- HOL is implemented in Standard ML, Mathematica in "an object oriented variant of C".
- LCF style theorem provers impose a performance penalty: even term construction often requires object logic type checking.
- Rewriting cannot compete with specialized algorithms.
- Example: polynomial arithmetic (we'll see this later).

Reliability

- Most theorem provers emphasize logical soundness.
- Most computer algebra systems will cut corners.
- Example: when integrating x^n most computer algebra systems will return $x^{n+1}/(n+1)$, but this is wrong for n = -1.
- Counterexample: Michael Beeson's MathXPert system for teaching students.

Another Difference

• Usability

- Computer algebra systems are task-oriented, and are generally fully automatic.
- Theorem provers support the task of interactive proof, but inexperienced users easily get stuck.
- Is this a failure of theorem prover design, or does it just reflect the greater complexity of the task?

Computer Algebra Techniques in Theorem Proving

- Use a computer algebra system as an oracle.
 - Needs careful handling to avoid unsoundness.
- Use the computer algebra system to compute a witness for the problem, and then verify it in the theorem prover.
 - Sound, but not all problems fit into the model.
- Implement computer algebra techniques as derived rules.
 - Sound, covers all problems, but might be inefficient.
- Implement computer algebra algorithms and data structures as HOL functions, prove them correct and execute them in the theorem prover.
 - Sound and efficient (same complexity), but very hard.

Combination Projects

Using the categories of the previous slide:

- OpenMath, MathML, MathWeb, and more Theorema (Buchberger et. al.) & Analytica (Clarke et. al.) Coding theory formalization (Ballarin & Paulson)
- Primality certificates (Harrison & Théry, Caprotti)
- Computer algebra techniques in HOL Light (Harrison)
 Computer algebra system in HOL Light (Kaliszyk & Wiedijk)
 Abstract algebra (the rest of this talk)
- Buchberger's algorithm (Théry)
 Cylindrical Algebraic Decomposition (Mahboubi)

For many others look at the Calculemus conference proceedings.

Elliptic Curves

 An elliptic curve over a field K is the set of points (x, y) ∈ K² satisfying a Weierstrass equation of the form

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where $a_i \in K$, plus a special point at infinity O.

• It's possible to 'add' two points on an elliptic curve to get a third point on the curve.

The Elliptic Curve $y^2 = x^3 - x$: Addition

Verifying Elliptic Curve Addition

- Algebraic formulas are provided for adding and negating points.
- The goal is to show that elliptic curve addition forms an Abelian group.
 - Adding and negating points on E results in points on E.
 - Addition is associative: $(p_1 + p_2) + p_3 = p_1 + (p_2 + p_3)$.
 - Addition is commutative: $p_1 + p_2 = p_2 + p_1$.
- The rest of the talk will describe some computer algebra techniques implemented as derived rules that were developed to attack this goal.

Adding a point on the curve to itself results on a point on the curve:

Goal
$\forall e \in Curve. \ \forall p \in curve_points \ e.$
curve_double e p \in curve_points e

(13 symbols)

Stage 1: Expand definition of curve equation and point doubling

Goal
y' ** 2 + e.a1 * x' * y' + e.a3 * y' =
x' ** 3 + e.a2 * x' ** 2 + e.a4 * x' + e.a6
0. $e \in Curve$
1. $x \in e.field.carrier$
2. $y \in e.field.carrier$
3. d \in field_nonzero e.field
4. $1 = (3 * x ** 2 + 2 * e.a2 * x + e.a4 - e.a1 * y) / d$
5. $m = ((x ** 3) + e.a4 * x + 2 * e.a6 - e.a3 * y) / d$
6. $x' = 1 ** 2 + e.a1 * 1 - e.a2 - 2 * x$
7. $y' = (1 + e.a1) * x' - m - e.a3$
8. $d = 2 * y + e.a1 * x + e.a3$
9. y ** 2 + e.a1 * x * y + e.a3 * y =
x ** 3 + e.a2 * x ** 2 + e.a4 * x + e.a6

(347 symbols)

Stage 2: Expand local definitions of all variables except the denominator d.

The goal is now of the form

 $\langle polynomial \rangle [x, y] = 0 \implies \langle rational \ function \rangle [x, y, d] = 0$

(1,445 symbols)

Stage 3: Eliminate the division by d by lifting it to the top level and then expand the definition of d.

The goal is now of the form

$$\langle polynomial \rangle [x, y] = 0 \implies \langle polynomial \rangle [x, y] = 0$$

(2,690 symbols)

Optimization: When lifting a/b + c/d, must compute the polynomial gcd of *b* and *d* to keep the resulting term size down.

Elliptic Curve Gröbner Basis

- Want to replace the elliptic curve polynomial with a set of normalizing rewrites: a Gröbner basis.
- This is a trivial case of Buchberger's Algorithm.
- Give x a larger weight than y and write the equation as

$$x^{3} = -a_{6} + a_{3}y + y^{2} - a_{4}x + a_{1}xy - a_{2}x^{2} \qquad (*)$$

• Multiply everything out, replacing

$$x^n = x^3 x^{n-3} \qquad (n \ge 3)$$

and reducing x^3 with the simplifying rewrite (*) above.

Elliptic Curve Gröbner Basis

• Optimization: Precompute

$$x^n = \langle polynomial \rangle [x, y]$$

for all powers of n that are needed, simplifying the right hand side so that it has no powers of x larger than 2.

- For the point doubling running example, x^9 is needed.
- The right hand sides can get quite large: x^9 'simplifies' to a term with 5,000 symbols.

Stage 4: Replace the elliptic curve polynomial with the normalizing rewrites $x^i = \cdots$.

The goal is now of the form

 $\langle rewrites \rangle \implies \langle polynomial \rangle [x, y] = 0$

(15,573 symbols)

Stage 5: Multiply out the polynomial, and reduce using the normalizing rewrites. Finally cancel terms to obtain the trival goal

$\mathbf{0}=\mathbf{0}$

That's the theory, anyway. Unfortunately, in practice the normalization takes way too long.

(>300,000 symbols)

Tips for Efficient Handling of Large Terms in HOL

Or: Four things I wish I'd known when I started

- Give the HOL pretty printer your own print functions (using temp_add_user_printer) to make the output as readable as possible. Cut off terms that are too big.
- Make the simplifier work for you, by giving it simple rewrites and custom decision procedures for solving side conditions.
- For complex normalization tasks add custom conversions to the simplifier, and stop it from descending into subterms matching P by giving it the null congruence rule P = P.
- Writing correct normalization conversions is difficult: they tend to have corner cases that are hard to predict. The only way to be sure: repeatedly normalize until nothing changes!

Summary

- This talk has surveyed different ways of using computer algebra techniques and systems to support theorem proving, illustrating each combination method with past and current projects.
- A collection of proof tools to support abstract algebra in HOL was also presented, and demonstrated on a subgoal of the thorny problem to verify elliptic curve addition.
- Future work is clear: improve the proof tools until the whole verification can be completed. Suggestions welcome!