
Verification Conditions
and Theorem Proving

Joe Hurd

joe.hurd@comlab.ox.ac.uk.

Specification & Verification I

Part II of the Computer Science Tripos
University of Cambridge

Verification Conditions and Theorem Proving – Joe Hurd – p.1/14



Verification Architecture

Specification to be proved

?

• human expert

Annotated specification

?

• VC generator

Set of logic statements (VC’s)

?

• theorem prover

Simplified set of

verification conditions

?

• human expert

End of proof

Verification Conditions and Theorem Proving – Joe Hurd – p.2/14



Example: Specification

ESC/Java is a verification system that allows users to
annotate Java programs with specifications, such as this
program to sort an array of two integers:

void sort2(int[] a) {
//@ requires a != null && a.length == 2
//@ ensures a[0] <= a[1]
if (a[0] > a[1]) {

int t = a[0];
a[0] = a[1];
a[1] = t;

}
}

Do we need a theorem prover to tackle the resulting VC?

Verification Conditions and Theorem Proving – Joe Hurd – p.3/14



Example: Resulting VC

(FORALL (t1) (FORALL (t2) (IMPLIES (AND (NEQ a null) (EQ (arrayLength

a) 2)) (AND (NEQ a null) (AND (AND (<= 0 0) (< 0 (arrayLength a)))

(AND (NEQ a null) (AND (AND (<= 0 1) (< 1 (arrayLength a))) (AND

(IMPLIES (> (select (select elem a) 0) (select (select elem a) 1))

(FORALL (t3) (AND (NEQ a null) (AND (AND (<= 0 0) (< 0 (arrayLength

a))) (FORALL (t) (IMPLIES (EQ t (select (select elem a) 0)) (FORALL

(t1) (IMPLIES (EQ t1 a) (AND (NEQ a null) (AND (AND (<= 0 1) (< 1

(arrayLength a))) (AND (NEQ t1 null) (AND (AND (<= 0 0) (< 0

(arrayLength t1))) (FORALL (t2) (IMPLIES (EQ t2 a) (AND (NEQ t2 null)

(AND (AND (<= 0 1) (< 1 (arrayLength t2))) (AND (<= (select (select

(store (store elem t1 (store (select elem t1) 0 (select (select elem

a) 1))) t2 (store (select (store elem t1 (store (select elem t1) 0

(select (select elem a) 1))) t2) 1 t)) a) 0) (select (select (store

(store elem t1 (store (select elem t1) 0 (select (select elem a) 1)))

t2 (store (select (store elem t1 (store (select elem t1 0 (select

(select elem a) 1))) t2 1 t)) a) 1)) (EQ true true))))))))))))))))))

(IMPLIES (NOT (> (select (select elem a) 0) (select (select elem a)

1))) (AND (<= (select (select elem a) 0) (select (select elem a) 1))

(EQ true true))))))))))) Yes, we need a theorem prover.

Verification Conditions and Theorem Proving – Joe Hurd – p.4/14



Verification Conditions In The Wild

• Most VCs are “big but dumb”.

• Arithmetic VCs are common.
• These arise from conditions on numeric variables.
• Example: array bounds checking.

• Equality VCs are also common.
• These arise from conditions on data structures:

∀m, a, v. load(store(m, a, v), a) = v

• Example: checking references are non-null.

• Many VCs are trivially true, such as

n + 1 < n ⇒ [huge formula]

Verification Conditions and Theorem Proving – Joe Hurd – p.5/14



Theorem Prover: Requirements

1. Must interpret formulas of integer arithmetic.

2. Must handle equality of uninterpreted function symbols.
• Uninterpreted functions are described by axioms.
• Example: ∀h, t. hd(cons(h, t)) = h

3. Must be able to combine theorem provers for different
theories.
• One VC can refer to multiple theories.
• Example: arithmetic on array indexes.

4. Must prove a wide range of VCs fully automatically with
no user assistance.
• In some applications (such as a compiler), it must

always work fully automatically.

Verification Conditions and Theorem Proving – Joe Hurd – p.6/14



Theorem Prover: Technique 1

• Presburger arithmetic (a.k.a. linear arithmetic).

• First order formulas with signature (Z, +, =).

• Can define syntactic sugar such as constants 0, 1, 2,
functions +,−, relations ≤, <, >,≥, even, odd and
multiplication by a constant.

• Example:

∀n > 7. ∃ i, j ≥ 0. 3i + 5j = n

• Shown to be decidable by Presburger in 1930.

Verification Conditions and Theorem Proving – Joe Hurd – p.7/14



Theorem Prover: Technique 1

• Decision procedure is by quantifier elimination.

• Base case: formulas with no quantifiers are just
arithmetic expressions with numbers as arguments, so
can simply be evaluated.

• Eliminating a quantifier: the simple case

∃x. φ(x) ≡ ∃x. (
∧

i si ≤ x) ∧ (
∧

j x ≤ tj)

≡
∧

i,j si ≤ tj

• In the general case, the inequalities will all refer to cx for
some integer constant c, and we will have to introduce
divisibility constraints.

Verification Conditions and Theorem Proving – Joe Hurd – p.8/14



Theorem Prover: Technique 2

• Equality of uninterpreted functions.

• Quantifier free first order formulas with signature
(D,F , =).
• Variables are implicitly universally quantified.
• Example:

f(f(f(f(f(x))))) = x

∧ f(f(f(x))) = x

⇒ f(x) = x

• Shown to be decidable by Ackermann in 1954.

Verification Conditions and Theorem Proving – Joe Hurd – p.9/14



Theorem Prover: Technique 2

Procedure to decide the validity of the formula

∀x1, . . . , xn. φ(x1, . . . , xn)

1. Equivalent to deciding the unsatisfiability of

∃x1, . . . , xn. ¬φ(x1, . . . , xn)

2. Skolemize: ¬φ(c1, . . . , cn).

3. Convert to DNF: Q1 ∨ · · · ∨ Qk.
• If any Qi is satisfiable then so is the disjunction.

4. Each Qi is a conjunction of literals, like so:

s1 = t1 ∧ · · · ∧ sn = tn ∧ u1 6= v1 ∧ · · · ∧ um 6= vm

Verification Conditions and Theorem Proving – Joe Hurd – p.10/14



Theorem Prover: Technique 2

Qi ≡ s1 = t1 ∧ · · · ∧ sn = tn ∧ u1 6= v1 ∧ · · · ∧ um 6= vm

≡ ¬(s1 = t1 ∧ · · · ∧ sn = tn ⇒ u1 = v1)

∧ · · ·

∧ ¬(s1 = t1 ∧ · · · ∧ sn = tn ⇒ um = vm)

We decide this type of formula using congruence closure:

1. Create a class for each subterm of the formula.

2. Merge classes corresponding to si and ti.

3. For every function symbol f , merge the classes
containing f(s) and f(t) if s and t are in the same class.

4. When all the merging is finished, check whether uj and
vj are in the same class.

Verification Conditions and Theorem Proving – Joe Hurd – p.11/14



Theorem Prover: Technique 3

• Given theorem provers for theories T1 and T2, combine
them to get a theorem prover for theory T1 ∪ T2.

• Nelson-Oppen combination of theorem provers:
• run each theorem prover separately;
• if one finds a contradiction, then finished;
• otherwise get them to return any equalities found;
• and restart the process with the extra facts.

• Example combining arithmetic and equality:

f(f(x) − f(y)) 6= f(z) ∧ y ≤ x ∧ x ≤ y + z ∧ z ≤ 0

• Warning: Can’t combine theories that interpret the
same function symbol!

Verification Conditions and Theorem Proving – Joe Hurd – p.12/14



Theorem Prover: Technique 3

• Problem: non-convex theories.

• A theory is non-convex if there is a set of literals that
imply a disjunction of equalities without implying a
single equality.

• Example with arithmetic and equality:

1 ≤ x ≤ 2 ∧ a = 1 ∧ b = 2 ∧ f(x) 6= f(a) ∧ f(x) 6= f(b)

• Entails x = 1 ∨ x = 2 but no single equality.
• No contradiction found, but the formula is

unsatisfiable.

• Solution: split proof state on disjunction of equalities.
• A very expensive operation :-(

Verification Conditions and Theorem Proving – Joe Hurd – p.13/14



Theorem Proving In The Wild

• The Simplify theorem prover is used to prove VCs from
ESC/Java.

• It uses all the techniques covered in this lecture.

• From a paper on Simplify by Detlefs, Nelson and Saxe:

“With the released version of Simplify, ESC/Java is able

to check the 44794 thousand lines of Java source in its

own front end (comprising 2331 routines and 29431

proof obligations) in 91 minutes. This is much faster

than the code could be checked by a human design

review, so we feel we have succeeded.”

Verification Conditions and Theorem Proving – Joe Hurd – p.14/14


	Verif{i}cation Architecture
	Example: Specif{i}cation
	Example: Resulting VC
	Verif{i}cation Conditions In The Wild
	Theorem Prover: Requirements
	Theorem Prover: Technique 1
	Theorem Prover: Technique 1
	Theorem Prover: Technique 2
	Theorem Prover: Technique 2
	Theorem Prover: Technique 2
	Theorem Prover: Technique 3
	Theorem Prover: Technique 3
	Theorem Proving In The Wild

