
Generating Verilog Checkers from PSL
Formulas

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.1/22

Contents

• Introduction
• Simple Formulas

• Verified Checkers

• An Example Formula

• Conclusion

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.2/22

Introduction: What is PSL?

• “PSL is an intuitive, declarative language for describing
behaviour over time.”

• This talk: the Temporal Layer of PSL, essentially LTL
with regular expressions:

• Boolean Expressions
• Evaluated on a single state.

• Sequential Extended Regular Expressions (SEREs)
• Evaluated on a finite sequence of states.

• Foundation Language Formulas
• Evaluated on a finite or infinite path of states.
• This talk: will only consider infinite paths.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.3/22

Introduction: Verilog Checkers

• Suppose we have a circuit written as a Verilog program,

• and a PSL formula that we would like to hold of every
simulation run of the circuit.
• Think of a simulation run as an infinite path of states.

• We can code up the formula as a Verilog module that
monitors the circuit.
• But how to avoid bugs?

• Using HOL4, we can verify a translation from the PSL
formula to a deterministic finite automaton.
• The DFA is guaranteed to produce an error iff the

PSL formula is violated on the simulation path.
• Thanks to Mike Gordon’s formalization of PSL.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.4/22

Contents

• Introduction

• Simple Formulas
• Verified Checkers

• An Example Formula

• Conclusion

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.5/22

Safety Violations

• Given a checking automaton for the PSL formula f ,

• and an infinite path p,

• when can the automaton report a property violation?

safety_violation p f ≡ ∃n. ∀q. |q| =∞⇒ ¬(p0,nq |= f)

p0 p1 · · · pn︸ ︷︷ ︸
bad prefix

• • • • • • · · · |= ¬f

• If the bad prefixes form a regular language, then we can
detect safety violations with a finite state automaton.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.6/22

Overall Goal

• This is the overall specification of a checker automaton:

∀f, p.
|p| =∞∧ simple f ⇒
(safety_violation p f ⇐⇒
∃n. amatch (sere2regexp (checker f)) p0,n)

• Observe that checker maps a PSL formula to a SERE.

• Not enough to have an implication, because otherwise
a trivial checker > or ⊥ would suffice.

• Condition 1: p is an infinite path.

• Condition 2: f is a simple formula.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.7/22

Strong Operators

• Strong operators can construct liveness properties.
• Liveness says that a property will eventually happen.
• A violation is an infinite path where the property

never occurs.

• Strong operators can induce subtle safety violations.

• For example, the formulas

{>} 7→ {{P [∗]} : {¬P}}!
(next P) until! (¬P)

are both safety violations on the path

P P P P · · ·

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.8/22

Strong Operators (2)

• Consider the formula

{>} 7→ {{P [∗]}; {¬P∧Q}}! ∧ {>} 7→ {{P [∗]}; {¬P∧¬Q}}!

• It’s “pathologically safe” [Kuperferman & Vardi 1999],
meaning that there is a path

P P P P · · ·

with a bad prefix [] for the property, but there are no bad
prefixes for either of the conjuncts.

• Solution: exclude all strong operators from our simple
class.
• Surprise: Accellera permit strong suffix implication
{·} 7→ {·}! in their simple class of formulas!

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.9/22

Contents

• Introduction

• Simple Formulas

• Verified Checkers
• An Example Formula

• Conclusion

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.10/22

Boolean Checkers

• Boolean formulas talk about a single state.

• All boolean formulas are simple:

` ∀f. boolean f ⇒ simple f

• Define a boolean_checker for boolean formulas:

` ∀f, p.
|p| =∞∧ boolean f ⇒
(safety_violation p f ⇐⇒
∃n. amatch (sere2regexp (boolean_checker f)) p0,n

• Use boolean checkers for boolean formulas:

` ∀f. boolean f ⇒ (checker f = boolean_checker f)

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.11/22

Temporal Checkers: Next

• The next operator ‘postpones’ a formula by one step:

` w |= next f ⇐⇒ |w| > 0 ∧ w1 |= f

• Next formulas are simple:

` ∀f. simple f ⇒ simple (next f)

• Next checkers just prepend the SERE {>}:

` checker (next f) = {>}; {checker f}

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.12/22

Temporal Checkers: Until

• The weak until operator is defined thus:

` w |= f until g ⇐⇒
∀j ∈ [0..|w|). wj |= f ⇒ ∃k ∈ [0..j + 1). wk |= g

• The condition for weak until formulas to be simple:

` ∀f, g. simple f ∧ boolean g ⇒ simple (f until g)

• Weak until checkers are defined as

` checker (f until g) ≡
{(boolean_checker g)[∗]};
{{checker f} u {boolean_checker g}}

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.13/22

Temporal Checkers: Or

• The ∨ temporal operator is defined in the obvious way:

` w |= f ∨ g ⇐⇒ w |= f ∨ w |= g

• Our condition for ∨ formulas to be simple:

` ∀f, g. simple f ∧ simple g ⇒ simple (f ∨ g)

• Accellera: ∀f, g. boolean f ∧ simple g ⇒ simple (f ∨ g)

• We’re more general for both ∨ and ∧.

• ∨ checkers are defined as

` checker (f ∨ g) ≡ {checker f} u {checker g}

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.14/22

Verification

• Most important was the following lemma:

` ∀f, p.
simple f ∧ |p| =∞ ⇒
(p |= ¬f ⇐⇒ safety_violation p f)

• For simple formulas, violatations are the same as safety
violations.

• Necessary to verify until, useful for the other operators.

` ∀f, p.
|p| =∞∧ simple f ⇒
(safety_violation p f ⇐⇒
∃n. amatch (sere2regexp (checker f)) p0,n)

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.15/22

Creating Verilog Checkers

• Take the SERE version of the checker, and lazily
convert to a nondeterministic finite automaton (NFA).

• Compute the reachable states of the deterministic finite
automaton (DFA) via transition theorems:

` ∀s.
StoB_REQ /∈ s ∧ BtoS_ACK ∈ s⇒
eval_transitions R [6] s = [2; 4]

• Finally, print the whole DFA as a Verilog module.
• An informal step, could introduce bugs :-(

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.16/22

Contents

• Introduction

• Simple Formulas

• Verified Checkers

• An Example Formula
• Conclusion

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.17/22

Example: PSL Formula

From page 45 of the Accellera PSL Reference Manual:

c ∧ next (a until b)

Their example actually uses strong until, we’ll use weak
until instead.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.18/22

Example: SERE

|- checker (...example PSL formula...) =

S_OR

(S_BOOL (B_NOT (B_PROP c)),

S_CAT

(S_BOOL B_TRUE,

S_CAT

(S_REPEAT (S_BOOL (B_NOT (B_PROP b))),

S_OR

(S_AND

(S_BOOL (B_NOT (B_PROP a)),

S_CAT

(S_BOOL (B_NOT (B_PROP b)),

S_REPEAT (S_BOOL B_TRUE))),

S_AND

(S_CAT

(S_BOOL (B_NOT (B_PROP a)),

S_REPEAT (S_BOOL B_TRUE)),

S_BOOL (B_NOT (B_PROP b)))))))

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.19/22

Example: Verilog Module
module Checker (a, b, c);

input a, b, c;

reg [2:0] state;

initial state = 0;

always @ (a or b or c)

begin

case (state)

0: if (c) state = 5; else state = 1;

1: begin $display ("Checker: property violated!"); $finish; end

2: begin $display ("Checker: property violated!"); $finish; end

3: state = 3;

4: if (a) if (b) state = 3; else state = 4;

else if (b) state = 3; else state = 2;

5: if (a) if (b) state = 3; else state = 4;

else if (b) state = 3; else state = 2;

default: begin $display ("Checker: unknown state"); $finish; end

endcase

end

endmodule

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.20/22

Contents

• Introduction

• Simple Formulas

• Verified Checkers

• An Example Formula

• Conclusion

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.21/22

Conclusion

• An interesting exercise that covers a wide range of
formulas while staying within PSL.

• Strong operators require more advanced technology.

• Possible practical applications of the Verilog checkers?
• Will almost certainly require state minimization to be

practical. To do!

• Future Work: To extend our coverage, must drop
SEREs as intermediate language.
• Would like to implement weak suffix implication
{·} 7→ {·} which is in the Accellera simple subset.

Generating Verilog Checkers from PSL Formulas – Joe Hurd – p.22/22

	Contents
	Introduction: What is PSL?
	Introduction: Verilog Checkers
	Contents
	Safety Violations
	Overall Goal
	Strong Operators
	Strong Operators (2)
	Contents
	Boolean Checkers
	Temporal Checkers: Next
	Temporal Checkers: Until
	Temporal Checkers: Or
	Verification
	Creating Verilog Checkers
	Contents
	Example: PSL Formula
	Example: SERE
	Example: Verilog Module
	Contents
	Conclusion

