o N

Generating Verilog Checkers from PSL
Formulas

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.1/22

Contents

Introduction

Simple Formulas
Verified Checkers

An Example Formula
Conclusion

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.2/22

Introduction: What is PSL.?
-

e “PSL is an intuitive, declarative language for describing
behaviour over time.”

e This talk: the Temporal Layer of PSL, essentially LTL
with regular expressions:

e Boolean Expressions
Evaluated on a single state.

e Sequential Extended Regular Expressions (SERES)
Evaluated on a finite sequence of states.

e Foundation Language Formulas

Evaluated on a finite or infinite path of states.
This talk: will only consider infinite paths.

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.3/22

Introduction: Verilog Checkers

-

e Suppose we have a circuit written as a Verilog program,

-

e and a PSL formula that we would like to hold of every
simulation run of the circuit.

Think of a simulation run as an infinite path of states.
e We can code up the formula as a Verilog module that
monitors the circuit.
But how to avoid bugs?
e Using HOL4, we can verify a translation from the PSL
formula to a deterministic finite automaton.

The DFA is guaranteed to produce an error iff the
PSL formula is violated on the simulation path.

Thanks to Mike Gordon’s formalization of PSL.

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.4/22

Contents

Introduction

Simple Formulas

Verified Checkers
An Example Formula
Conclusion

Safety Violations
-

e Given a checking automaton for the PSL formula f,
e and an infinite path p,
e when can the automaton report a property violation?

safety violation p f = dn. Vq. |q| = 0 = ﬂ(po’nq = f)

po p1 pp & e e e e e ... = - f
bad prefix

e If the bad prefixes form a regular language, then we can
detect safety violations with a finite state automaton.

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.6/22

Overall Goal
-

This is the overall specification of a checker automaton:

v, p.
Ip| = 0o Asimple f =
(safety violation p [<—

In. amatch (sere2regexp (checker f)) p*™)

Observe that checker maps a PSL formula to a SERE.

Not enough to have an implication, because otherwise
a trivial checker T or L would suffice.

Condition 1: p is an infinite path.
Condition 2: f is a simple formula.

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.7/22

Strong Operators
-

e Strong operators can construct liveness properties. T
Liveness says that a property will eventually happen.

A violation is an infinite path where the property
never occurs.

e Strong operators can induce subtle safety violations.
e For example, the formulas

LT = WP} s (=P}
(next P) until! (=P)

are both safety violations on the path

PPPP -

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.8/22

Strong Operators (2)
-

e Consider the formula T

{Th = UPKHEPAQHH AT = ({P[¥}; i~ PA-Q]}

e It's “pathologically safe” [Kuperferman & Vardi 1999],
meaning that there is a path

PPPP -

with a bad prefix || for the property, but there are no bad
prefixes for either of the conjuncts.

e Solution: exclude all strong operators from our simple
class.

Surprise: Accellera permit strong suffix implication
L {-} — {-}'in their simple class of formulas! J

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.9/22

-

Contents

e Introduction
e Simple Formulas

. Verified Checkers

e An Example Formula
e Conclusion

Boolean Checkers

e Boolean formulas talk about a single state.
e All boolean formulas are simple:

-~ Vf. boolean f = simple f

e Define a boolean_checker for boolean formulas:

- Vf,p.
|p| = 0o A boolean f =

(safety violation p f <~

In. amatch (sere2regexp (boolean_checker f)) p%"

e Use boolean checkers for boolean formulas:

_ — Vf. boolean f = (checker f = boolean_checker f) J

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.11/22

Temporal Checkers: Next

o N

e The next operator ‘postpones’ a formula by one step:
FwlEnext f = |w|>0A w = f
e Next formulas are simple:
~ Vf. simple f = simple (next f)
e Next checkers just prepend the SERE {T}:

- checker (next f) = {T};{checker f}

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.12/22

Temporal Checkers: Until
-

e The weak until operator is defined thus:
F wE funtilg <—
Vie 0. lw) w Ef=>3kel[0.j+1).w" =g
e The condition for weak until formulas to be simple:
= Vf,g. simple f A boolean g = simple (f until g)
e Weak until checkers are defined as

= checker (f until g) =
{(boolean_checker g)[*|};
{{checker f} M {boolean_checker g}}

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.13/22

Temporal Checkers: Or

o N

e The v temporal operator is defined in the obvious way:
FwEfVyg <= wEkEfVwkEgyg
e Our condition for v formulas to be simple:
= Vf,g. simple f Asimple g = simple (fV g)

Accellera: Vf, g. boolean f A simple g = simple (f V g)
We’re more general for both v and A.

e \ checkers are defined as

- checker (f Vg) = {checker f} M {checker g}

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.14/22

Verification

e Most important was the following lemma:

- Vi, p.
simple f A |p| =00 =
(p = ~f <= safety_violation p f)
e For simple formulas, violatations are the same as safety
violations.
e Necessary to verify until, useful for the other operators.

- Vf,p.
|p| = oo Asimple [=
(safety violation p f <—
In. amatch (sere2regexp (checker f)) p*™) J

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.15/22

Creating Verilog Checkers
- -

o Take the SERE version of the checker, and lazily
convert to a nondeterministic finite automaton (NFA).

e Compute the reachable states of the deterministic finite
automaton (DFA) via transition theorems:

— Vs.
StoB_REQ ¢ s A BtoS_ACK € s =
eval_transitions R [6] s = [2; 4]

e Finally, print the whole DFA as a Verilog module.
An informal step, could introduce bugs :-(

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.16/22

-

Contents

e Introduction
e Simple Formulas
e \erified Checkers

. An Example Formula

e Conclusion

Example: PSL Formula

o N

From page 45 of the Accellera PSL Reference Manual:

c A next (a until b)

Their example actually uses strong until, we'll use weak
until instead.

o |

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.18/22

Example: SERE
-

| - checker (...example PSL formula...
S_OR
(S_BOOL (B_NOT (B_PROP c)),
S_CAT
(S_BOOL B_TRUE,
S_CAT
(S_REPEAT (S_BOOL (B_NOT (B_PROP Db))),
S_OR
(S_AND
(S_BOOL (B_NOT (B_PROP a)),
S_CAT

(S_BOOL (B_NOT (B_PROP b)),
S_REPEAT (S_BOOL B_TRUE))),
S__AND
(S_CAT
(S_BOOL (B_NOT (B_PROP a)),
S_REPEAT (S_BOOL B_TRUE))

S_BOOL (B_NOT (B_PROP Db)))))))

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.19/22

Example:

module Checker (a, b, c¢);

Verilog Module

input a, b, c;
reg [2:0] state;
initial state = 0;
always @ (a or b or c)
begin
case (state)
O: 1f (c) state = 5; else state = 1;
1: begin $display ("Checker: property violated!"); $finish; end
2: begin $display ("Checker: property violated!"); S$finish; end
3: state = 3;
4: 1f (a) 1f (b) state = 3; else state = 4;
else 1f (b) state = 3; else state = 2;
5: 1f (a) 1f (b) state = 3; else state = 4;
else 1f (b) state = 3; else state = 2;
default: begin S$display ("Checker: unknown state"); $finish; end
endcase
end

endmodule

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.20/22

Contents

e Introduction
e Simple Formulas

e Verified Checkers
e An Example Formula

. Conclusion

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.21/22

Conclusion

-

An interesting exercise that covers a wide range of
formulas while staying within PSL.

Strong operators require more advanced technology.

Possible practical applications of the Verilog checkers?
Will almost certainly require state minimization to be
practical. To do!

Future Work: To extend our coverage, must drop

SEREs as intermediate language.

Would like to implement weak suffix implication
{-} — {-} which is in the Accellera simple subset.

|

Generating Verilog Checkers from PSL Formulas — Joe Hurd — p.22/22

	Contents
	Introduction: What is PSL?
	Introduction: Verilog Checkers
	Contents
	Safety Violations
	Overall Goal
	Strong Operators
	Strong Operators (2)
	Contents
	Boolean Checkers
	Temporal Checkers: Next
	Temporal Checkers: Until
	Temporal Checkers: Or
	Verification
	Creating Verilog Checkers
	Contents
	Example: PSL Formula
	Example: SERE
	Example: Verilog Module
	Contents
	Conclusion

