Boolification: Encoding High-Level
Types as Strings of Bits

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Konrad Slind, University of Utah

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.1/26

Contents

Introduction

Encoders

Decoders

Converting Formulas to Boolean Form
Conclusion

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.2/26

Introduction

-

e Encode high-level data as bitstrings, and decode later.

type 7 M M
encode decode
bitstrings 100101 - - - ; - 100101 - - -

e The operation f could be:
transferring data over a network;
saving and restoring the state of an interpreter;
L or compressing, storing, and later decompressing. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.3/26

Introduction

-

e Motivation: translate HOL goals to boolean form for
SAT solvers (Gordon’s HolSatLib),
BDD reasoning (Gordon’s Ho1BddLib)
and model checkers (Amjad).

e Need: encoders and decoders for HOL types .
e Could do this by hand for each application.

o Better: automatic definition of verified encoders and
decoders whenever new datatypes are declared.
Will explain how in this talk.

Warning: not everything is implemented yet.

e Requires uniform procedures for operating on all HOL
L types: this is called polytypism. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.4/26

Contents

Introduction

Encoders

Decoders
Converting Formulas to Boolean Form
Conclusion

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.5/26

Encoders

o N

e A 7-encoder is an injective function 7 — bool list.

The injectivity condition guarantees that decoding is
unigue whenever it is possible.

e Encoder for natural numbers:

encode_num n

= ifn=0then [T; T]
else if even n then L :: encode num ((n — 2) div 2)
else T :: L :: encode_num ((n — 1) div 2)

e Use extra parameters to handle polymorphic types:

encode option f NONE = |1]

\— encode option f (SOME xz) = T fux J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.6/26

Polytypism in HOL

o Use an interpretation [[- [of HOL types into terms: T

[elor = ©O(a) if ais a type variable
[[(le--ﬁn)c]]@,r = I'(¢) [[71]]@,r [[Tn]]@,r o/w

e This scheme cannot be expressed as a higher-order
logic function.

e We express it as a meta-language (ML) function.

e Developed by Slind for automatically defining size
functions to support well-founded recursion.

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.7/26

Polytypic Encoders
-

e Suppose datatype (aq,...,a,)7 (With constructors
Ci,...,Cg) has been declared in encoder context I'.

e Define© ={a;— fi1,....,an+— ful}.
The f; : o; — bool list are new function variables.
e Extend I' with a binding for encode_7:

Atyop. If tyop = 7 then encode 7 f1 ... f,, else T'(tyop).

e Then define

encode 7 f1... fn (Ci (x1:71) ... (Tm:Tm))
= marker k1 Q [11]lgp 1 @ -+ @[]l g ¥m

L where marker £ ¢ IS the ith boolean list of length [log £]. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.8/26

Example Encoders

datatype bool = False | True

encode bool False = |Ll| A
encode bool True = |[T]
datatype "a list = [] | :: of "a * ’Ta 1list

LA
T 2 f h @encodelist |t

encode_list f []
encode list f (h :: 1)

datatype tree = Node of tree 1list

encode_tree (Node ts) = encode_list encode tree ts

All automatically generated. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.9/26

Contents

Introduction
Encoders

Decoders

Converting Formulas to Boolean Form
Conclusion

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.10/26

Decoders

-

e A 7-decoder ‘parses’ boolean lists into elements of 7:

decode_7 : bool list — (7 X bool list) option

e Use () to recover a standard decoding function of type
bool list — 7

(decode_T) = fst o the o decode_T
e The decoder for booleans:

decode_bool [] = NONE A
decode bool (h :: 1) SOME (h, t)

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.11/26

Decoders: Existence

o N

e The coder p e d property requires that the encoder e and
decoder d are mutually inverse on domain p:

Vix,t.px = (l=exQt <= d [l = SOME (z,t))
e Now use encode_7 to define the specification of decode_r:

coder p1 €1 di A --- A coder p, e, d, =
coder (all.7 p1...py) (encode_T €1 ...e,) (decode 7 dy .. .dy)

The function all_7 lifts the predicates p; : a; — bool to a predicate
of the datatype (a1, ..., a,)7, and has type

all_r: (acy — bool) — --+ — (a, — bool) — (a1,...,a,)7 — bool

e When is there a decode_r satisfying this specification?

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.12/26

Decoders: Existence

-

Say an encoder e is prefixiree on p whenever
Ve,y.px Apy Nisprefix (e x) (ey) = x =y

Note: prefixiree IS @ stronger property than injectivity.

There exists a decode_r satisfying the decoder
specification whenever encode_r satisfies:

prefixfree p1 e1 A - - - A prefixfree p,, €, =

prefixfree (all_T p1...pn) (encode.T ey ...¢ep)

In progress: prove datatype encoders are prefixiree.

Definition step: use axiom of choice to pick an arbitrary
decode_7 satisfying decoder specification. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.13/26

Decoders: Recursion Equations

o N

e We define decode_r as the inverse of encode_t.
This provides a useful sanity check on encode_r.

o But we also want recursion equations for decode_r.
This will allow us to evaluate decode_7 In the logic.

e We derive the recursion equations of decode._r.
The specification of decode_7 has all the information.

e The decoder for products shows the typical shape:

decode_prod f gl =
case f [of NONE — NONE
| SOME (z,1') — case g I’ of NONE — NONE
| SOME (y,1") — SOME ((z,y),1")

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.14/26

Decoders: Recursion Equations

o N

e [he list decoder is recursive:

reducing d =
decode_list d[] = NONE A
decode listd (L ::) = SOME ([],I) A
decode list d (T :: 1) =
case d [of NONE — NONE
| SOME (h,l") — case decode_list d I’ of NONE — NONE
| SOME (t,1”") — SOME (h :: t,1")

e The sub-decoder d must satisfy reducing:
the bool list returned by d must be a sublist of its input.

e This ensures termination of the recursion equations. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.15/26

-

.

Decoders: Recursion Equations

-

Recall: datatype tree = Node of tree list
Here is the decoder for the tree datatype:

decode_tree [=
case decode._list decode_tree [of NONE — NONE
| SOME (t¢s,l’) — SOME (Node ts, ")

To derive these recursion equations:
1. we first prove reducing decode_tree;
2. and then use the recursion equations for decode_list.

But step 1 relies on decode_tree being already defined.

Put forward decode_tree as a challenge problem for
defining functions in an interactive theorem prover. J

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.16/26

Decoders: Example

o N

e At this point we have the recursion equations for both
encoders and decoders.

e Can evaluate them using logical inference:

encode._list encode_num |1; 2] =
T, T L T3 T T Ly T T

decode_list decode num [T; T; L; T: T; T; L; T; T; 1] =
SOME ([1; 2],[])

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.17/26

Contents

e Introduction
e Encoders
e Decoders

. Converting Formulas to
Boolean Form

e Conclusion

Converting Formulas to Boolean Form

o N

e We now present two steps to convert formulas to
equivalent quantified boolean formulas (QBF):

1. Replace quantifiers of arbitrary type with quantifiers
over boolean variables.

2. Replace functions and predicates with versions
operating on boolean lists.

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.19/26

-

.

Boolean Variable Introduction

e Define a ‘fixed-width’ predicate:

-

width d n x <= dl.lengthl =n A dl = SOME (z,[])

e First convert all quantifiers to be over boolean lists:

(Vx. widthd n x = p x)
(Jz. widthdn z Ap x)

<= VI (lengthl =n)=p ((d))
<= dl. (lengthl=n)Ap ((d))

e Then convert all quantifiers to be over booleans:

(Vi.lengthl =0=pl
(Vi.lengthl =sucn = pl
(Fl. lengthl=0Apl
(l.lengthl =sucn Apl

)
)
)
)

<

<~
—
—

pll
Vi.lengthl =n=Vb.p (b::1)

pl]
dl.lengthl =n AJb.p (b:: 1)

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.20/26

Boolean Propagation Theorems

. .

e Suppose the following n-ary function occurs in formulas
fmm——>1—T

e We must define a version operating on boolean lists:

A

f : bool list — - - - — bool list — bool list

e The boolean propagation theorem for f is

f ({(decode_T1) :fl) ... ({decode_ty,) x,,)
= (decode.7) (f x1...%p)

e Similarly for each n-ary predicate.

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.21/26

Missionaries & Cannibals

-

Three missionaries and three cannibals on left bank of
river.

Have a boat that can hold up to two people.

Cannibals must never outnumber missionaries on either
bank.

Goal: get everyone to right bank of river.

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.22/26

Missionaries & Cannibals

o N

Am. m <3Adc.c<3IATb.AM'.m' <3AT. <3 ATV

(s = (m,c,b)) A(s" = (m/, b)) A the states are well-formed]
b’ = —b A the boat switches banks]
(m'=0vd <m)A left bank not outnumbered
(m'=3vm <d)A [right bank not outnumbered]
if b then ' if the boat starts on |
m <mAd <cA the left, 1 or 2 people
m +cd+1<m+c<m' +c +2 | travel from left to right
else ' else if the boat starts on
m<m ANe<cd A the right, 1 or 2 people
m+c+1<m +d <m+c+2 travel from right to left

o |

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.23/26

Missionaries & Cannibals

Elmo,ml. [mo; ml] é [T, T] A\ 300,61 [CQ, Cl] [T T] N

<
<

Elm{)?mll' [m67 mll] é [T; T] A\ 306,6’1 [007 Cl]

([m; mi] =11 v [ep; ei] < [m; mi]) A

([m; mi] = [T; TV [mg; mi] < [cfs ¢4]) A

if =0’ then

mg; my] < [mo; ma] A [eg; €] < [eo; ea] A

my; mi] + [eg; 1] < [mo; ma] + [eo; ea] A

mo; ma] + [co; e1] < [mg; mi] + [eg; ¢i] + [1L; T]
else

mo; ma) < [mp; my] A feo; 1] < [eh; 4] A

mo; ma] + [co; e1] < [mg; mh] + [eg; ¢h] A

mp; mi] + [ch; 4] < [mo; ma] + [co; ea] + [L; T

[T, 7] A 3V
= ((decode_bnum) [mg; m1|, (decode_bnum) [cg; c¢1], —b") A
((decode_bnum) [mg; m}], (decode_bnum) [cy;)], b') A

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.24/26

Contents

Introduction

Encoders

Decoders

Converting Formulas to Boolean Form

Conclusion

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.25/26

Conclusion

-

Have shown how to define compositional encoders and
decoders in a systematic way.

Encoders are automatically defined when datatype is
declared.

Automatic definition of decoders present more
problems.

Showed a possible approach for such a proof tool.
Converting formulas to boolean form is partly
automated.

Would be nice if HOL kept track of boolean versions

of functions.

Related work: Hinze’s generic functional programming.

|

Boolification: Encoding High-Level Types as Strings of Bits — Joe Hurd — p.26/26

	Contents
	Introduction
	Introduction
	Contents
	Encoders
	Polytypism in HOL
	Polytypic Encoders
	Example Encoders
	Contents
	Decoders
	Decoders: Existence
	Decoders: Existence
	Decoders: Recursion Equations
	Decoders: Recursion Equations
	Decoders: Recursion Equations
	Decoders: Example
	Contents
	Converting Formulas to Boolean Form
	Boolean Variable Introduction
	Boolean Propagation Theorems
	Missionaries & Cannibals
	Missionaries & Cannibals
	Missionaries & Cannibals
	Contents
	Conclusion

