Boolification: Encoding High-Level Types as Strings of Bits

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Konrad Slind, University of Utah

Contents

Introduction

- Encoders
- Decoders
- Converting Formulas to Boolean Form
- Conclusion

Introduction

• Encode high-level data as bitstrings, and decode later.

- The operation f could be:
 - transferring data over a network;
 - saving and restoring the state of an interpreter;
 - or compressing, storing, and later decompressing.

Introduction

- Motivation: translate HOL goals to boolean form for
 - SAT solvers (Gordon's HolSatLib),
 - BDD reasoning (Gordon's HolBddLib)
 - and model checkers (Amjad).
- Need: encoders and decoders for HOL types τ .
- Could do this by hand for each application.
- Better: automatic definition of verified encoders and decoders whenever new datatypes are declared.
 - Will explain how in this talk.
 - Warning: not everything is implemented yet.
- Requires uniform procedures for operating on all HOL types: this is called *polytypism*.

Contents

Introduction Encoders

- Decoders
- Converting Formulas to Boolean Form
- Conclusion

Encoders

- A τ -encoder is an injective function $\tau \rightarrow$ bool list.
 - The injectivity condition guarantees that decoding is unique whenever it is possible.
- Encoder for natural numbers:

```
\mathsf{encode\_num}\ n
```

= if n = 0 then $[\top; \top]$ else if even n then \bot :: encode_num ((n - 2) div 2)else \top :: \bot :: encode_num ((n - 1) div 2)

• Use extra parameters to handle polymorphic types:

encode_option
$$f$$
 NONE = $[\bot]$
encode_option f (SOME x) = $\top :: f x$

Polytypism in HOL

• Use an interpretation $[\![\cdot]\!]_{\Theta,\Gamma}$ of HOL types into terms:

 $\llbracket \alpha \rrbracket_{\Theta,\Gamma} = \Theta(\alpha) \quad \text{if } \alpha \text{ is a type variable} \\ \llbracket (\tau_1, ..., \tau_n) c \rrbracket_{\Theta,\Gamma} = \Gamma(c) \llbracket \tau_1 \rrbracket_{\Theta,\Gamma} \cdots \llbracket \tau_n \rrbracket_{\Theta,\Gamma} \quad o/w$

- This scheme cannot be expressed as a higher-order logic function.
- We express it as a meta-language (ML) function.
- Developed by Slind for automatically defining size functions to support well-founded recursion.

Polytypic Encoders

- Suppose datatype (α₁,..., α_n)τ (with constructors C₁,..., C_k) has been declared in encoder context Γ.
- Define $\Theta = \{ \alpha_1 \mapsto f_1, \dots, \alpha_n \mapsto f_n \}.$
 - The $f_i : \alpha_i \rightarrow \text{bool list}$ are new function variables.
- Extend Γ with a binding for $encode_{\tau}$:

 $\lambda tyop.$ if $tyop = \tau$ then encode_ $\tau f_1 \dots f_n$ else $\Gamma(tyop)$.

• Then define

encode_
$$\tau f_1 \dots f_n (C_i (x_1:\tau_1) \dots (x_m:\tau_m))$$

= marker $k i @ [[\tau_1]]_{\Theta,\Gamma} x_1 @ \dots @ [[\tau_m]]_{\Theta,\Gamma} x_m$

where marker k i is the *i*th boolean list of length $\lceil \log k \rceil$.

Example Encoders

• datatype bool = False | True

encode_bool False = $[\bot] \land$ encode_bool True = $[\top]$

• datatype 'a list = [] | :: of 'a * 'a list

encode_list f [] = $[\bot] \land$ encode_list f (h :: t) = $\top :: f h @ encode_list f t$

• datatype tree = Node of tree list

encode_tree (Node ts) = encode_list encode_tree ts

• All automatically generated. \checkmark

Contents

- Introduction
- Encoders

Decoders

- Converting Formulas to Boolean Form
- Conclusion

Decoders

• A τ -decoder 'parses' boolean lists into elements of τ :

decode_ τ : bool list $\rightarrow (\tau \times \text{bool list})$ option

• Use $\langle \cdot \rangle$ to recover a standard decoding function of type bool list $\to \tau$:

 $\langle \mathsf{decode}_{-}\tau \rangle = \mathsf{fst} \circ \mathsf{the} \circ \mathsf{decode}_{-}\tau$

• The decoder for booleans:

Decoders: Existence

• The coder *p e d* property requires that the encoder *e* and decoder *d* are mutually inverse on domain *p*:

 $\forall l, x, t. \ p \ x \ \Rightarrow \ (l = e \ x @ t \ \Longleftrightarrow \ d \ l = \mathsf{SOME} \ (x, t))$

• Now use $encode_{\tau}$ to define the specification of $decode_{\tau}$:

coder $p_1 e_1 d_1 \wedge \cdots \wedge \text{coder } p_n e_n d_n \Rightarrow$ coder (all_ $\tau p_1 \dots p_n$) (encode_ $\tau e_1 \dots e_n$) (decode_ $\tau d_1 \dots d_n$)

• The function all_ τ lifts the predicates $p_i : \alpha_i \to \text{bool to a predicate}$ of the datatype $(\alpha_1, \ldots, \alpha_n)\tau$, and has type

 $\operatorname{all}_{\tau} : (\alpha_1 \to \operatorname{bool}) \to \cdots \to (\alpha_n \to \operatorname{bool}) \to (\alpha_1, \dots, \alpha_n) \tau \to \operatorname{bool}$

• When is there a decode_ τ satisfying this specification?

Decoders: Existence

• Say an encoder e is prefixfree on p whenever

 $\forall x, y. \ p \ x \land p \ y \land \mathsf{is_prefix} \ (e \ x) \ (e \ y) \Rightarrow x = y$

- Note: prefixfree is a stronger property than injectivity.
- There exists a decode₋τ satisfying the decoder specification whenever encode₋τ satisfies:

prefixfree $p_1 \ e_1 \land \dots \land$ prefixfree $p_n \ e_n \Rightarrow$ prefixfree (all_ $\tau \ p_1 \dots p_n$) (encode_ $\tau \ e_1 \dots e_n$)

- In progress: prove datatype encoders are prefixfree.
- Definition step: use axiom of choice to pick an arbitrary decode_
 τ satisfying decoder specification.

Decoders: Recursion Equations

- We define decode_ τ as the inverse of encode_ τ .
 - This provides a useful sanity check on $encode_{-\tau}$.
- But we also want recursion equations for decode_ τ .
 - This will allow us to evaluate decode_ τ in the logic.
- We derive the recursion equations of decode_ τ .
 - The specification of decode_ τ has all the information.
- The decoder for products shows the typical shape:

Decoders: Recursion Equations

• The list decoder is recursive:

```
reducing d \Rightarrow

decode_list d[] = \text{NONE} \land

decode_list d(\bot :: l) = \text{SOME}([], l) \land

decode_list d(\top :: l) =

case dl of NONE \rightarrow NONE

| \text{ SOME}(h, l') \rightarrow \text{ case decode_list } dl' \text{ of NONE } \rightarrow \text{ NONE}

| \text{ SOME}(t, l'') \rightarrow \text{ SOME}(h :: t, l'')
```

- The sub-decoder d must satisfy reducing:
 - the bool list returned by d must be a sublist of its input.
- This ensures termination of the recursion equations.

Decoders: Recursion Equations

- **Recall:** datatype tree = Node of tree list
- Here is the decoder for the tree datatype:

decode_tree l =case decode_list decode_tree l of NONE \rightarrow NONE | SOME $(ts, l') \rightarrow$ SOME (Node ts, l')

- To derive these recursion equations:
 - 1. we first prove reducing decode_tree;
 - 2. and then use the recursion equations for decode_list.
- But step 1 relies on decode_tree being already defined.
- Put forward decode_tree as a challenge problem for defining functions in an interactive theorem prover.

Decoders: Example

- At this point we have the recursion equations for both encoders and decoders.
- Can evaluate them using logical inference:

```
encode_list encode_num [1; 2] = [\top; \top; \bot; \bot; \top; \top; \top; \bot; \top; \bot]
```

decode_list decode_num $[\top; \top; \bot; \top; \top; \top; \bot; \top; \top; \bot] =$ SOME ([1; 2],[])

Contents

- Introduction
- Encoders
- Decoders

Converting Formulas to Boolean Form

Conclusion

Converting Formulas to Boolean Form

- We now present two steps to convert formulas to equivalent quantified boolean formulas (QBF):
 - 1. Replace quantifiers of arbitrary type with quantifiers over boolean variables.
 - 2. Replace functions and predicates with versions operating on boolean lists.

Boolean Variable Introduction

• Define a 'fixed-width' predicate:

width $d \ n \ x \iff \exists l$. length $l = n \land d \ l = \text{SOME} (x, [])$

• First convert all quantifiers to be over boolean lists:

 $(\forall x. \text{ width } d \ n \ x \Rightarrow p \ x) \iff \forall l. (\text{length } l = n) \Rightarrow p (\langle d \rangle \ l)$ $(\exists x. \text{ width } d \ n \ x \land p \ x) \iff \exists l. (\text{length } l = n) \land p (\langle d \rangle \ l)$

• Then convert all quantifiers to be over booleans:

 $\begin{array}{ll} (\forall l. \ \text{length} \ l = 0 \Rightarrow p \ l) & \iff & p \ [] \\ (\forall l. \ \text{length} \ l = \mathsf{suc} \ n \Rightarrow p \ l) & \iff & \forall l. \ \text{length} \ l = n \Rightarrow \forall b. \ p \ (b :: l) \\ (\exists l. \ \text{length} \ l = 0 \land p \ l) & \iff & p \ [] \\ (\exists l. \ \text{length} \ l = \mathsf{suc} \ n \land p \ l) & \iff & \exists l. \ \text{length} \ l = n \land \exists b. \ p \ (b :: l) \end{array}$

Boolean Propagation Theorems

• Suppose the following *n*-ary function occurs in formulas:

$$f:\tau_1\to\cdots\to\tau_n\to\tau$$

• We must define a version operating on boolean lists:

 $\hat{f}: \mathsf{bool} \ \mathsf{list} \to \cdots \to \mathsf{bool} \ \mathsf{list} \to \mathsf{bool} \ \mathsf{list}$

• The boolean propagation theorem for f is

$$f \left(\left\langle \mathsf{decode}_{-}\tau_{1} \right\rangle x_{1} \right) \dots \left(\left\langle \mathsf{decode}_{-}\tau_{n} \right\rangle x_{n} \right) \\ = \left\langle \mathsf{decode}_{-}\tau \right\rangle \left(\hat{f} x_{1} \dots x_{n} \right)$$

• Similarly for each *n*-ary predicate.

Missionaries & Cannibals

- Three missionaries and three cannibals on left bank of river.
- Have a boat that can hold up to two people.
- Cannibals must never outnumber missionaries on either bank.
- Goal: get everyone to right bank of river.

Missionaries & Cannibals

 $\exists m. m \leq 3 \land \exists c. c \leq 3 \land \exists b. \exists m'. m' \leq 3 \land \exists c'. c' \leq 3 \land \exists b'.$ $(s = (m, c, b)) \land (s' = (m', c', b')) \land$ [the states are well-formed] $b' = \neg b \land$ [the boat switches banks] $(m' = 0 \lor c' < m') \land$ [left bank not outnumbered] $(m' = 3 \lor m' \le c') \land$ [right bank not outnumbered] if b then if the boat starts on the left, 1 or 2 people $m' < m \land c' < c \land$ $m' + c' + 1 \le m + c \le m' + c' + 2$ travel from left to right else if the boat starts on else the right, 1 or 2 people $m < m' \land c < c' \land$ travel from right to left $m + c + 1 \le m' + c' \le m + c + 2$

Missionaries & Cannibals

 $\begin{array}{l} \exists \ m_{0}, m_{1}. \ [m_{0}; \ m_{1}] \stackrel{\circ}{\leq} [\top; \top] \ \land \ \exists \ c_{0}, c_{1}. \ [c_{0}; \ c_{1}] \stackrel{\circ}{\leq} [\top; \top] \ \land \\ \exists \ m_{0}', m_{1}'. \ [m_{0}'; \ m_{1}'] \stackrel{\circ}{\leq} [\top; \top] \ \land \ \exists \ c_{0}', c_{1}'. \ [c_{0}'; \ c_{1}'] \stackrel{\circ}{\leq} [\top; \top] \ \land \ \exists \ b'. \\ s = (\langle \text{decode_bnum} \rangle \ [m_{0}; \ m_{1}], \ \langle \text{decode_bnum} \rangle \ [c_{0}; \ c_{1}], \ \neg b') \ \land \\ s' = (\langle \text{decode_bnum} \rangle \ [m_{0}'; \ m_{1}'], \ \langle \text{decode_bnum} \rangle \ [c_{0}; \ c_{1}'], \ \neg b') \ \land \\ ([m_{0}'; \ m_{1}'] \stackrel{\circ}{=} [] \ \lor \ [c_{0}'; \ c_{1}'] \stackrel{\circ}{\leq} [m_{0}'; \ m_{1}']) \ \land \\ ([m_{0}'; \ m_{1}'] \stackrel{\circ}{=} [\top; \top] \ \lor \ [m_{0}'; \ m_{1}'] \stackrel{\circ}{\leq} [c_{0}'; \ c_{1}']) \ \land \\ \text{if } \neg b' \text{ then} \end{array}$

 $[m'_{0}; m'_{1}] \stackrel{?}{\leq} [m_{0}; m_{1}] \land [c'_{0}; c'_{1}] \stackrel{?}{\leq} [c_{0}; c_{1}] \land \\ [m'_{0}; m'_{1}] \stackrel{?}{+} [c'_{0}; c'_{1}] \stackrel{?}{\leq} [m_{0}; m_{1}] \stackrel{?}{+} [c_{0}; c_{1}] \land \\ [m_{0}; m_{1}] \stackrel{?}{+} [c_{0}; c_{1}] \stackrel{?}{\leq} [m'_{0}; m'_{1}] \stackrel{?}{+} [c'_{0}; c'_{1}] \stackrel{?}{+} [\bot; \top]$

else

$$[m_0; m_1] \stackrel{?}{\leq} [m'_0; m'_1] \land [c_0; c_1] \stackrel{?}{\leq} [c'_0; c'_1] \land$$

$$[m_0; m_1] \stackrel{?}{+} [c_0; c_1] \stackrel{?}{\leq} [m'_0; m'_1] \stackrel{?}{+} [c'_0; c'_1] \land$$

$$[m'_0; m'_1] \stackrel{?}{+} [c'_0; c'_1] \stackrel{?}{\leq} [m_0; m_1] \stackrel{?}{+} [c_0; c_1] \stackrel{?}{+} [\bot; \top]$$

Contents

- Introduction
- Encoders
- Decoders
- Converting Formulas to Boolean Form

Conclusion

Conclusion

- Have shown how to define compositional encoders and decoders in a systematic way.
- Encoders are automatically defined when datatype is declared.
- Automatic definition of decoders present more problems.
 - Showed a possible approach for such a proof tool.
- Converting formulas to boolean form is partly automated.
 - Would be nice if HOL kept track of boolean versions of functions.
- Related work: Hinze's generic functional programming.