
Boolification: Encoding High-Level
Types as Strings of Bits

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Konrad Slind, University of Utah

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.1/26

Contents

• Introduction
• Encoders

• Decoders

• Converting Formulas to Boolean Form

• Conclusion

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.2/26

Introduction

• Encode high-level data as bitstrings, and decode later.

type τ M M

bitstrings 100101 · · · -
f

100101 · · ·
?

encode

6

decode

• The operation f could be:
• transferring data over a network;
• saving and restoring the state of an interpreter;
• or compressing, storing, and later decompressing.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.3/26

Introduction

• Motivation: translate HOL goals to boolean form for
• SAT solvers (Gordon’s HolSatLib),
• BDD reasoning (Gordon’s HolBddLib)
• and model checkers (Amjad).

• Need: encoders and decoders for HOL types τ .

• Could do this by hand for each application.

• Better: automatic definition of verified encoders and
decoders whenever new datatypes are declared.
• Will explain how in this talk.
• Warning: not everything is implemented yet.

• Requires uniform procedures for operating on all HOL
types: this is called polytypism.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.4/26

Contents

• Introduction

• Encoders
• Decoders

• Converting Formulas to Boolean Form

• Conclusion

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.5/26

Encoders

• A τ -encoder is an injective function τ → bool list.
• The injectivity condition guarantees that decoding is

unique whenever it is possible.

• Encoder for natural numbers:

encode num n

= if n = 0 then [>; >]

else if even n then ⊥ :: encode num ((n− 2) div 2)

else > :: ⊥ :: encode num ((n− 1) div 2)

• Use extra parameters to handle polymorphic types:

encode option f NONE = [⊥]

encode option f (SOME x) = > :: f x

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.6/26

Polytypism in HOL

• Use an interpretation [[·]]Θ,Γ of HOL types into terms:

[[α]]Θ,Γ = Θ(α) if α is a type variable

[[(τ1, ..., τn)c]]Θ,Γ = Γ(c) [[τ1]]Θ,Γ · · · [[τn]]Θ,Γ o/w

• This scheme cannot be expressed as a higher-order
logic function.

• We express it as a meta-language (ML) function.

• Developed by Slind for automatically defining size
functions to support well-founded recursion.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.7/26

Polytypic Encoders

• Suppose datatype (α1, . . . , αn)τ (with constructors
C1, . . . ,Ck) has been declared in encoder context Γ.

• Define Θ = {α1 7→ f1, . . . , αn 7→ fn}.
• The fi : αi → bool list are new function variables.

• Extend Γ with a binding for encode τ :

λtyop. if tyop = τ then encode τ f1 . . . fn else Γ(tyop).

• Then define

encode τ f1 . . . fn (Ci (x1 :τ1) . . . (xm :τm))

= marker k i @ [[τ1]]Θ,Γ x1 @ · · · @ [[τm]]Θ,Γ xm

where marker k i is the ith boolean list of length dlog ke.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.8/26

Example Encoders

• datatype bool = False | True

encode bool False = [⊥] ∧
encode bool True = [>]

• datatype ’a list = [] | :: of ’a * ’a list

encode list f [] = [⊥] ∧
encode list f (h :: t) = > :: f h @ encode list f t

• datatype tree = Node of tree list

encode tree (Node ts) = encode list encode tree ts

• All automatically generated.
√

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.9/26

Contents

• Introduction

• Encoders

• Decoders
• Converting Formulas to Boolean Form

• Conclusion

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.10/26

Decoders

• A τ -decoder ‘parses’ boolean lists into elements of τ :

decode τ : bool list→ (τ × bool list) option

• Use 〈·〉 to recover a standard decoding function of type
bool list→ τ :

〈decode τ〉 = fst ◦ the ◦ decode τ

• The decoder for booleans:

decode bool [] = NONE ∧
decode bool (h :: t) = SOME (h, t)

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.11/26

Decoders: Existence

• The coder p e d property requires that the encoder e and
decoder d are mutually inverse on domain p:

∀ l, x, t. p x ⇒ (l = e x@ t ⇐⇒ d l = SOME (x, t))

• Now use encode τ to define the specification of decode τ :

coder p1 e1 d1 ∧ · · · ∧ coder pn en dn ⇒
coder (all τ p1 . . . pn) (encode τ e1 . . . en) (decode τ d1 . . . dn)

• The function all τ lifts the predicates pi : αi → bool to a predicate
of the datatype (α1, . . . , αn)τ , and has type

all τ : (α1 → bool)→ · · · → (αn → bool)→ (α1, . . . , αn)τ → bool

• When is there a decode τ satisfying this specification?

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.12/26

Decoders: Existence

• Say an encoder e is prefixfree on p whenever

∀x, y. p x ∧ p y ∧ is prefix (e x) (e y)⇒ x = y

• Note: prefixfree is a stronger property than injectivity.

• There exists a decode τ satisfying the decoder
specification whenever encode τ satisfies:

prefixfree p1 e1 ∧ · · · ∧ prefixfree pn en ⇒
prefixfree (all τ p1 . . . pn) (encode τ e1 . . . en)

• In progress: prove datatype encoders are prefixfree.

• Definition step: use axiom of choice to pick an arbitrary
decode τ satisfying decoder specification.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.13/26

Decoders: Recursion Equations

• We define decode τ as the inverse of encode τ .
• This provides a useful sanity check on encode τ .

• But we also want recursion equations for decode τ .
• This will allow us to evaluate decode τ in the logic.

• We derive the recursion equations of decode τ .
• The specification of decode τ has all the information.

• The decoder for products shows the typical shape:

decode prod f g l =

case f l of NONE → NONE

| SOME (x, l′) → case g l′ of NONE → NONE

| SOME (y, l′′) → SOME ((x, y), l′′)

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.14/26

Decoders: Recursion Equations

• The list decoder is recursive:

reducing d ⇒
decode list d [] = NONE ∧
decode list d (⊥ :: l) = SOME ([], l) ∧
decode list d (> :: l) =

case d l of NONE → NONE

| SOME (h, l′) → case decode list d l′ of NONE → NONE

| SOME (t, l′′) → SOME (h :: t, l′′)

• The sub-decoder d must satisfy reducing:
• the bool list returned by d must be a sublist of its input.

• This ensures termination of the recursion equations.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.15/26

Decoders: Recursion Equations

• Recall: datatype tree = Node of tree list

• Here is the decoder for the tree datatype:

decode tree l =

case decode list decode tree l of NONE → NONE

| SOME (ts, l′) → SOME (Node ts, l′)

• To derive these recursion equations:
1. we first prove reducing decode tree;
2. and then use the recursion equations for decode list.

• But step 1 relies on decode tree being already defined.

• Put forward decode tree as a challenge problem for
defining functions in an interactive theorem prover.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.16/26

Decoders: Example

• At this point we have the recursion equations for both
encoders and decoders.

• Can evaluate them using logical inference:

encode list encode num [1; 2] =

[>; >; ⊥; >; >; >; ⊥; >; >; ⊥]

decode list decode num [>; >; ⊥; >; >; >; ⊥; >; >; ⊥] =

SOME ([1; 2], [])

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.17/26

Contents

• Introduction

• Encoders

• Decoders

• Converting Formulas to
Boolean Form
• Conclusion

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.18/26

Converting Formulas to Boolean Form

• We now present two steps to convert formulas to
equivalent quantified boolean formulas (QBF):

1. Replace quantifiers of arbitrary type with quantifiers
over boolean variables.

2. Replace functions and predicates with versions
operating on boolean lists.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.19/26

Boolean Variable Introduction

• Define a ‘fixed-width’ predicate:

width d n x ⇐⇒ ∃ l. length l = n ∧ d l = SOME (x, [])

• First convert all quantifiers to be over boolean lists:

(∀x. width d n x⇒ p x) ⇐⇒ ∀ l. (length l = n)⇒ p (〈d〉 l)
(∃x. width d n x ∧ p x) ⇐⇒ ∃ l. (length l = n) ∧ p (〈d〉 l)

• Then convert all quantifiers to be over booleans:

(∀ l. length l = 0⇒ p l) ⇐⇒ p []

(∀ l. length l = suc n⇒ p l) ⇐⇒ ∀ l. length l = n⇒ ∀ b. p (b :: l)

(∃ l. length l = 0 ∧ p l) ⇐⇒ p []

(∃ l. length l = suc n ∧ p l) ⇐⇒ ∃ l. length l = n ∧ ∃ b. p (b :: l)

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.20/26

Boolean Propagation Theorems

• Suppose the following n-ary function occurs in formulas:

f : τ1 → · · · → τn → τ

• We must define a version operating on boolean lists:

f̂ : bool list→ · · · → bool list→ bool list

• The boolean propagation theorem for f is

f (〈decode τ1〉 x1) . . . (〈decode τn〉 xn)

= 〈decode τ〉 (f̂ x1 . . . xn)

• Similarly for each n-ary predicate.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.21/26

Missionaries & Cannibals

• Three missionaries and three cannibals on left bank of
river.

• Have a boat that can hold up to two people.

• Cannibals must never outnumber missionaries on either
bank.

• Goal: get everyone to right bank of river.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.22/26

Missionaries & Cannibals

∃m. m ≤ 3 ∧ ∃ c. c ≤ 3 ∧ ∃ b. ∃m′. m′ ≤ 3 ∧ ∃ c′. c′ ≤ 3 ∧ ∃ b′.
(s = (m, c, b)) ∧ (s′ = (m′, c′, b′)) ∧ [the states are well-formed]

b′ = ¬b ∧ [the boat switches banks]

(m′ = 0 ∨ c′ ≤ m′) ∧ [left bank not outnumbered]

(m′ = 3 ∨m′ ≤ c′) ∧ [right bank not outnumbered]

if b then

m′ ≤ m ∧ c′ ≤ c ∧
m′ + c′ + 1 ≤ m+ c ≤ m′ + c′ + 2

if the boat starts on

the left, 1 or 2 people

travel from left to right

else

m ≤ m′ ∧ c ≤ c′ ∧
m+ c+ 1 ≤ m′ + c′ ≤ m+ c+ 2

else if the boat starts on

the right, 1 or 2 people

travel from right to left

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.23/26

Missionaries & Cannibals
∃m0,m1. [m0; m1] ≤̂ [>; >] ∧ ∃ c0, c1. [c0; c1] ≤̂ [>; >] ∧
∃m′0,m′1. [m′0; m′1] ≤̂ [>; >] ∧ ∃ c′0, c′1. [c′0; c′1] ≤̂ [>; >] ∧ ∃ b′.
s = (〈decode bnum〉 [m0; m1], 〈decode bnum〉 [c0; c1], ¬b′) ∧
s′ = (〈decode bnum〉 [m′0; m′1], 〈decode bnum〉 [c′0; c′1], b′) ∧
([m′0; m′1] =̂ [] ∨ [c′0; c′1] ≤̂ [m′0; m′1]) ∧
([m′0; m′1] =̂ [>; >] ∨ [m′0; m′1] ≤̂ [c′0; c′1]) ∧
if ¬b′ then

[m′0; m′1] ≤̂ [m0; m1] ∧ [c′0; c′1] ≤̂ [c0; c1] ∧
[m′0; m′1] +̂ [c′0; c′1] <̂ [m0; m1] +̂ [c0; c1] ∧
[m0; m1] +̂ [c0; c1] ≤̂ [m′0; m′1] +̂ [c′0; c′1] +̂ [⊥; >]

else

[m0; m1] ≤̂ [m′0; m′1] ∧ [c0; c1] ≤̂ [c′0; c′1] ∧
[m0; m1] +̂ [c0; c1] <̂ [m′0; m′1] +̂ [c′0; c′1] ∧
[m′0; m′1] +̂ [c′0; c′1] ≤̂ [m0; m1] +̂ [c0; c1] +̂ [⊥; >]

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.24/26

Contents

• Introduction

• Encoders

• Decoders

• Converting Formulas to Boolean Form

• Conclusion

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.25/26

Conclusion

• Have shown how to define compositional encoders and
decoders in a systematic way.

• Encoders are automatically defined when datatype is
declared.

• Automatic definition of decoders present more
problems.
• Showed a possible approach for such a proof tool.

• Converting formulas to boolean form is partly
automated.
• Would be nice if HOL kept track of boolean versions

of functions.

• Related work: Hinze’s generic functional programming.

Boolification: Encoding High-Level Types as Strings of Bits – Joe Hurd – p.26/26

	Contents
	Introduction
	Introduction
	Contents
	Encoders
	Polytypism in HOL
	Polytypic Encoders
	Example Encoders
	Contents
	Decoders
	Decoders: Existence
	Decoders: Existence
	Decoders: Recursion Equations
	Decoders: Recursion Equations
	Decoders: Recursion Equations
	Decoders: Example
	Contents
	Converting Formulas to Boolean Form
	Boolean Variable Introduction
	Boolean Propagation Theorems
	Missionaries & Cannibals
	Missionaries & Cannibals
	Missionaries & Cannibals
	Contents
	Conclusion

