
Formalizing a CAS(n) Algorithm in HOL
Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.1/23



Contents

• Introduction
• Formalizing a Parallel Architecture

• Formalizing CAS(n)

• Simulating CAS(n)

• Statement of Correctness

• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.2/23



What Does a CAS(n) Algorithm Do?

• Context is many processors and a shared memory.

• CAS(n) stands for Multiple Compare And Swap:

if the n memory addresses a1, . . . , an

contain the expected values x1, . . . , xn

then replace them with the values y1, . . . , yn

• Many processors could be concurrently executing
CAS(n), with potentially overlapping memory
addresses.

• The important thing is that the operation must act
atomically—useful for cleanly updating data-structures
in a multi-threaded environment.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.3/23



Primitive Atomic Operations

In this talk we assume the following primitive atomic
operations:

• Many instruction sets include an atomic CAS(1):

if the memory address a

contains the expected value x

then replace it with the value y

CAS(1) returns the value that it found in the address a.

• Also assume that memory reads and writes are atomic,
as well as a malloc operation to obtain fresh storage.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.4/23



CAS(n) Algorithms

• There are many implementations of the CAS(n)
algorithm.

• They differ in their primitive atomic operations, run-time
performance and additional space requirements.

• They also have different specifications, according to
their interpretation of “the operation must act
atomically ”. We’ll discuss this later.

• We have formalized the CAS(n) algorithm developed by
Harris, Fraser and Pratt in Cambridge.

• From now on: CAS(n) refers to the CAS(n)
implementation of Harris et. al.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.5/23



Main Challenges for Formalization

Creating a logical model of a parallel architecture,
supporting:

• independent execution of many processors
communicating only through a shared memory;

• arbitrary interleaving of instructions at the granularity of
the primitive atomic operations;

• higher-level constructs such as recursion;

• and a tidy way of initializing each processor.

This is where we are now. Future work will concentrate on
support for specification and verification within this model.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.6/23



Contents

• Introduction

• Formalizing a Parallel
Architecture
• Formalizing CAS(n)

• Simulating CAS(n)

• Statement of Correctness

• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.7/23



Memory Model: Interface

Want a model of memory with the following interface:

minit : α∗ → (α)memory
mread : (α)memory → N→ α

mwrite : (α)memory → N→ α→ (α)memory
malloc : (α)memory → N→ N× (α)memory

mcas : (α)memory → N→ α→ α→ α

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.8/23



Memory Model: Implementation

The underlying type is (α)memory = α∗.

minit l = l

mread m l = nth l (mextend_to m l)

mwrite m l n = update_nth l (K n) (mextend_to m l)

malloc m n = (length m, mextend_by m n)

mcas m l e n = let a← mread m l

in (a, if a = e then mwrite m l n else m)

The worker functions extend the memory as required:

mextend_by m n = append m (klist arb n)

mextend_to m n = if n < length m then m

else mextend_by m (suc n− length m)

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.9/23



Parallel Architecture: Overview

• Identify a processor with its register file:

proc = S→ N

• The whole parallel architecture can then be modelled by
a list of processors and a shared memory:

arch = (N)memory × proc∗

• The global state advances by any non-halted processor
executing a primitive atomic instruction.

• Everything happens with respect to a global program
(not stored in the shared memory!) and a “pc” register
in each processor.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.10/23



Parallel Architecture: Instruction Set

An instruction corresponds to a primitive atomic operation:

operation = NOP

| UP of N× S
| RD of N× S
| WR of S× N
| CAS of N× S× S× S
| ALLOC of N× S

instruction = LAB of S
| INS of labels → proc → operation

(labels = S→ N stores the program labels.)

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.11/23



Parallel Architecture: Local Steps

• The machine_step function executes one instruction of a
processor, updating the register file and the shared
memory:

machine_step prog mem reg =

let pc← reg “pc” in

let reg′ ← update “pc” (suc pc) reg in

interpret (labels prog) mem reg′ (nth pc prog)

• A relation is used to account for halting:

local_step prog (m, r) (m′, r′) =

¬halted prog r ∧ ((m′, r′) = machine_step prog m r)

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.12/23



Parallel Architecture: Global Steps

• This is the definition of the global step relation:

global_step prog (m, p) (m′, p′) =

length p′ = length p ∧
∃x.
x < length p ∧
(∀ y. y < length p ∧ y 6= x⇒ nth y p = nth y p′) ∧
local_step prog (m, nth x p) (m′, nth x p′)

• Intuitively, a global step is simply a local step in one of
the processors.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.13/23



Parallel Architecture: Global Steps

• For simulation, we prefer the following:

` next (global_step prog) (m, p) =

snd

(foldl

(λ (n, s), r.

(n+ 1,

(if halted prog r then s else

(I ## (λ r′. update_nth n (K r′) p))
(machine_step prog m r) insert s))) (0, {}) p)

• Grungy looking RHS, but executes quickly in the logic.

• It also avoids reasoning ‘inside set comprehensions’.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.14/23



Contents

• Introduction

• Formalizing a Parallel Architecture

• Formalizing CAS(n)
• Simulating CAS(n)

• Statement of Correctness

• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.15/23



Higher-Level Programming Constructs

• Problem: CAS(n) algorithm expressed as 38 lines of
C-like pseudo-code, including high-level constructs
such as:
• function calls;
• recursion;
• structs

but we have extremely primitive instruction set.

• Solution: Write macro instructions (of type instruction∗)
that implement higher-level constructs.

• A compilation phase reduces programs to low-level
instructions, so get proper interleaving behaviour.

• But source code of programs is possible to read (and
debug!).

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.16/23



Higher-Level Programming Constructs

Some examples of instruction macros:

JLR l =

[INS (λ labs, reg. UP (suc (reg “pc”)) “link”);

INS (λ labs, reg. UP (labs l) “pc” ]

PUSH rs =

flat

(append

[MALLOC (suc (LENGTH rs)) “Z” ; ST “stack” “Z” ; MV “Z” “stack” ]

(append

(flat (map (λ r. [INC “Z” ; ST r “Z” ]) rs)) [ZAP [“Z” ]])

CALL rs l =

append (PUSH (“link” :: rs)) (append (JLR l) (POP (“link” :: rs)))

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.17/23



Implementing CAS(n)

Can now implement the functions of CAS(n):
[LABEL "rdcss";

MV "arg0" "d"; ZAP ["arg0"];

LABEL "rdcss-1";

VAL "d" "dv";

LDM "dv" ["a1"; "o1"; "a2"; "o2"]; ZAP ["a1"; "o1"; "dv"];

VAL "a2" "a2v"; ZAP ["a2"];

CAS1 "a2v" "o2" "d" "r"; ZAP ["a2v"];

BR (\x. ˜is_Descriptor x) "r" "rdcss-2";

MV "r" "arg0";

CALL ["d"] "complete";

JMP "rdcss-1";

LABEL "rdcss-2";

BR2 (\x y. ˜(x = y)) "r" "o2" "rdcss-3";

MV "d" "arg0";

CALL ["r"] "complete";

LABEL "rdcss-3"; ZAP ["d"; "o2"];

MV "r" "result"; ZAP ["r"];

RETURN]‘;

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.18/23



Contents

• Introduction

• Formalizing a Parallel Architecture

• Formalizing CAS(n)

• Simulating CAS(n)
• Statement of Correctness

• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.19/23



Contents

• Introduction

• Formalizing a Parallel Architecture

• Formalizing CAS(n)

• Simulating CAS(n)

• Statement of Correctness
• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.20/23



Statement of Correctness

• First attempt:
• when CAS(n) algorithm executed on only one

processor, it “does the right thing”;
• when CAS(n) algorithm is executed by many

processors, the result is the same as if they had
executed sequentially in some order.

• But the implementation of CAS(n) we have formalized
satisfies a stronger property: it is linearizable.

• Would like to formalize this by introducing notion of time
into the model.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.21/23



Contents

• Introduction

• Formalizing a Parallel Architecture

• Formalizing CAS(n)

• Simulating CAS(n)

• Statement of Correctness

• Conclusion

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.22/23



Conclusion

• We have shown that it’s possible to formalize low-level
parallel algorithms in HOL.

• Remains to be seen how easy it will be to specify and
verify them: this is the next item on the agenda!

• Would also like to extend the memory model to include
memory barriers (c.f. Gordon’s model of Alpha
architecture), and verify a more realistic version of the
CAS(n) algorithm.

Formalizing a CAS(n) Algorithm in HOL – Joe Hurd – p.23/23


	Contents
	What Does a CAS(n)
Algorithm Do?
	Primitive Atomic Operations
	CAS(n) Algorithms
	Main Challenges for Formalization
	Contents
	Memory Model: Interface
	Memory Model: Implementation
	Parallel Architecture: Overview
	Parallel Architecture: Instruction Set
	Parallel Architecture: Local Steps
	Parallel Architecture: Global Steps
	Parallel Architecture: Global Steps
	Contents
	Higher-Level Programming Constructs
	Higher-Level Programming Constructs
	Implementing CAS(n)
	Contents
	Contents
	Statement of Correctness
	Contents
	Conclusion

