o N

Formalizing a CAS(n) Algorithm in HOL
Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.1/23

Contents

Introduction

Formalizing a Parallel Architecture
Formalizing CAS(n)

Simulating CAS(n)

Statement of Correctness
Conclusion

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.2/23

What Does a CAS(n) Algorithm Do?

-

-

Context is many processors and a shared memory.
CAS(n) stands for Multiple Compare And Swap:

If the n memory addresses ai, ..., Gan
contain the expected values T1,...,Tn
then replace them with the values y1,...,y,

Many processors could be concurrently executing
CAS(n), with potentially overlapping memory
addresses.

The important thing is that the operation must act
atomically—useful for cleanly updating data-structures
In a multi-threaded environment.

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.3/23

Primitive Atomic Operations

-

In this talk we assume the following primitive atomic
operations:

e Many instruction sets include an atomic CAS(1):

If the memory address a
contains the expected value =
then replace it with the value y

CAS(1) returns the value that it found in the address a.

e Also assume that memory reads and writes are atomic,
as well as a malloc operation to obtain fresh storage.

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.4/23

CAS(n) Algorithms
-

There are many implementations of the CAS(n)
algorithm.

They differ in their primitive atomic operations, run-time
performance and additional space requirements.

They also have different specifications, according to
their interpretation of “the operation must act
atomically”. We'll discuss this later.

We have formalized the CAS(n) algorithm developed by
Harris, Fraser and Pratt in Cambridge.

From now on: CAS(n) refers to the CAS(n)
Implementation of Harris et. al.

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.5/23

Main Challenges for Formalization

o N

Creating a logical model of a parallel architecture,
supporting:

e independent execution of many processors
communicating only through a shared memory;

e arbitrary interleaving of instructions at the granularity of
the primitive atomic operations;

e higher-level constructs such as recursion;
e and a tidy way of initializing each processor.

This is where we are now. Future work will concentrate on
support for specification and verification within this model.

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.6/23

Contents

-

e Introduction

. Formalizing a Parallel

Architecture
e Formalizing CAS(n)
e Simulating CAS(n)
e Statement of Correctness
e Conclusion

Memory Model: Interface
- | - -

Want a model of memory with the following interface:

minit : o — (a)memory
a)memory — N — «

mread ()

mwrite : (a)memory — N — a — (a)memory
(@)
(@)

malloc : (a)memory — N — N x (a«)memory

mcas aymemory — N —a— a— «

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.8/23

Memory Model: Implementation

-

minit [

mread m [

mwrite miln =

malloc m n

mcasmlen

The underlying type is («)memory = o*.

-

[

nth [(mextend_to m [)

update_nth [(K n) (mextend to m)
(length m, mextend_by m n)

let @ < mread m [

in (a, if a = e then mwrite m [n else m)

The worker functions extend the memory as required:

mextend by m n

mextend to m n

.

= append m (klist arb n)
= if n < length m then m
else mextend by m (suc n — length m) J

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.9/23

-

Parallel Architecture: Overview

-

Identify a processor with its register file:
proc =5 — N

The whole parallel architecture can then be modelled by
a list of processors and a shared memory:

arch = (N)memory x proc*
The global state advances by any non-halted processor

executing a primitive atomic instruction.

Everything happens with respect to a global program
(not stored in the shared memory!) and a “pc” register
In each processor.

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.10/23

Parallel Architecture: Instruction Set

=

operation =

instruction =

An instruction corresponds to a primitive atomic operation:

B

NOP

UP of N xS
RDof N xS
WR of S x N
CASof NXS xS xS
ALLOC of N x S

LAB of S
INS of labels — proc — operation

L(labe/s — S — N stores the program labels.) J

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd —p.11/23

Parallel Architecture: Local Steps
B -

e The machine_step function executes one instruction of a

processor, updating the register file and the shared
memory:

machine_step prog mem reg =
let pc < reg PC” in
let reg’ <+ update “pC” (suc pc) reg in
interpret (labels prog) mem reg’ (nth pc prog)

e A relation is used to account for halting:

local_step prog (m,r) (m',r") =

—halted prog r A ((m’,r") = machine_step prog m r)

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.12/23

Parallel Architecture: Global Steps

o N

e This is the definition of the global step relation:

global_step prog (m,p) (m',p’) =
length p’ = length p A
Jz.
x < length p A
(Vy.y <lengthpAy#2=nthyp=nthyp) A
local_step prog (m,nth z p) (m’, nth z p')

e Intuitively, a global step is simply a local step in one of
the processors.

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.13/23

Parallel Architecture: Global Steps

o N

e For simulation, we prefer the following:

- next (global_step prog) (m,p) =
snd
(foldl

(A(n,s),r.
(n+1,
(if halted prog r then s else

(I #4 (Ar'. update_nth n (K1) p))
(machine_step prog m r) insert s))) (0,{}) p)

e Grungy looking RHS, but executes quickly in the logic.
L e It also avoids reasoning ‘inside set comprehensions’. J

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.14/23

Contents

Introduction
Formalizing a Parallel Architecture

Formalizing CAS(n)
Simulating CAS(n)

Statement of Correctness
Conclusion

Higher-Level Programming Constructs

-

.

-

Problem: CAS(n) algorithm expressed as 38 lines of
C-like pseudo-code, including high-level constructs
such as:

function calls;
recursion;
structs
but we have extremely primitive instruction set.

Solution: Write macro instructions (of type instruction™)
that implement higher-level constructs.

A compilation phase reduces programs to low-level
Instructions, so get proper interleaving behaviour.

But source code of programs is possible to read (and

debug!). J

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.16/23

Higher-Level Programming Constructs

o N

Some examples of instruction macros:

JLR I =
[INS (A labs,reg. UP (suc (reg ‘pc”)) “link”);
INS (Alabs,reg. UP (labs 1) “pC”]
PUSH rs =
flat
(append
[IMALLOC (suc (LENGTH rs)) “Z”; ST “stack” “Z”; MV “Z” “stack”
(append
(flat (map (Ar. [INC “Z” ST r “Z7]) rs)) [ZAP [*Z7]])
CALL rsl =

L append (PUSH (“link” :: rs)) (append (JLR 1) (POP (“link” :: rs))) J

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.17/23

-

.

Implementing CAS(n)

[LABEL "rdcss";
MV "argO" "d";
LABEL "rdcss—-1";
VAL " d" " dv " ’.
LDM "dV" ["alll;
VAL "a2" "aZV";
CASl "a2v" "02" "d"
BR (\x. “is_Descriptor x)
MV "r" "argO";

CALL ["d"]
JMP "rdcss—-1";
LABEL
BR2 (\x vy.
MV "d" "argO";
CALL ["r"]
LABEL "rdcss-3";
MV "r" "result";

RETURN] ‘;

"01"’. "a2"’.
"r"’.

"r"

"complete";

"rdcss—-2";

(X — y)) "r" "02"

"complete";

Can now implement the functions of CAS(n):

"02"];

"rdcss—-2";

"rdcss—-3";

ZAP ["argO"];

ZAP
ZAP
ZAP

["a]_";
["8.2"],'

["a2v"] ;

"Ol"; "dV"];

ZAP
ZAP

["d";

["r"];

"02"] ,.

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.18/23

Contents

ntroduction
~ormalizing a Parallel Architecture

~ormalizing CAS(n)

Simulating CAS(n)

Statement of Correctness
Conclusion

Contents

ntroduction
~ormalizing a Parallel Architecture

~ormalizing CAS(n)
Simulating CAS(n)

Statement of Correctness

Conclusion

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.20/23

Statement of Correctness

o N

e First attempt:

when CAS(n) algorithm executed on only one
processor, it “does the right thing”;

when CAS(n) algorithm is executed by many
processors, the result is the same as if they had
executed sequentially in some order.

e But the implementation of CAS(n) we have formalized
satisfies a stronger property: it is linearizable.

e Would like to formalize this by introducing notion of time
iInto the model.

o |

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.21/23

Contents

ntroduction
~ormalizing a Parallel Architecture

~ormalizing CAS(n)
Simulating CAS(n)
Statement of Correctness

Conclusion

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.22/23

Conclusion

-

We have shown that it's possible to formalize low-level
parallel algorithms in HOL.

Remains to be seen how easy it will be to specify and
verify them: this is the next item on the agenda!

Would also like to extend the memory model to include
memory barriers (c.f. Gordon’s model of Alpha
architecture), and verify a more realistic version of the
CAS(n) algorithm.

|

Formalizing a CAS(n) Algorithm in HOL — Joe Hurd — p.23/23

	Contents
	What Does a CAS(n)
Algorithm Do?
	Primitive Atomic Operations
	CAS(n) Algorithms
	Main Challenges for Formalization
	Contents
	Memory Model: Interface
	Memory Model: Implementation
	Parallel Architecture: Overview
	Parallel Architecture: Instruction Set
	Parallel Architecture: Local Steps
	Parallel Architecture: Global Steps
	Parallel Architecture: Global Steps
	Contents
	Higher-Level Programming Constructs
	Higher-Level Programming Constructs
	Implementing CAS(n)
	Contents
	Contents
	Statement of Correctness
	Contents
	Conclusion

