The Schroeder-Bernstein Theorem

Joe Hurd

joe.hurd@cl.cam.ac.uk.

Part I(A) Discrete Mathematics

Computer Science Tripos
University of Cambridge

Statement of the Theorem

Theorem: Given two sets A, B and two injective functions

$$f: A \to B$$

$$g: B \to A$$

there exists a bijective function

$$h: A \rightarrow B$$

Proof: This lecture.

Reminder: *injective* means 1-to-1, *surjective* means onto, and *bijective* means injective and surjective.

Example: Squares and Cubes

• Consider the following example using subsets of \mathbb{N} :

$$A = \{0, 1, 4, 9, 16, 25, 36, \ldots\}$$
 $B = \{0, 1, 8, 27, 64, 125, 216, \ldots\}$
 $f : A \to B$
 $\vdots n \mapsto n^3$
 $g : B \to A$
 $\vdots n \mapsto n^2$

- Need a bijective function $h: A \rightarrow B$.
- Note that f is not bijective (it misses out 8).
- One solution is $h: n \mapsto (\sqrt{n})^3$.

How To Prove It?

- Problem: we must prove the theorem without assuming anything about the sets A and B.
- Logically speaking, fewer theorems hold for arbitrary sets than hold for countable sets. This is obvious!
- Practically speaking, arbitrary sets have less structure:
 - no handy injection to the natural numbers,
 - so no induction over points.
- For an example of how things can go wrong when sets become uncountable, refer to *The Banach-Tarski Paradox*^a in probability theory.

^a[Stan Wagon, Cambridge University Press 1993]

An Informal Proof

- f represented by $\swarrow\downarrow\searrow$, g represented by $\nwarrow\uparrow\nearrow$.
- Every point has 1 arrow out and at most 1 arrow in.
- For any $a \in A$, say that a is B-stopping if making backward jumps starting from a ends up in B.

• Define
$$h(a) = \begin{cases} g^{-1}(a) & \text{if } a \text{ is } B\text{-stopping.} \\ f(a) & \text{otherwise} \end{cases}$$

Reducing the Theorem to a Lemma

Lemma: Given two sets A, B with $B \subseteq A$, if there exists an injective function $f: A \rightarrow B$ there exists a bijective function $h: A \rightarrow B$.

Reducing the Theorem to a Lemma

Proof that the lemma implies the theorem:

- 1. Since f and g are injections, $g \circ f$ is an injection from A to g(B). Also $g(B) \subseteq A$, and the conditions of the lemma are now satisfied, so there must exist a bijection h from A to g(B).
- 2. It is given that g is an injection from B to A, so g is a bijection from B to g(B). A bijection has an inverse that is a bijection, and so g^{-1} is a bijection from g(B) to B.
- 3. The composition of two bijections is a bijection, and so $g^{-1} \circ h$ is a bijection from A to B.

Proving the Lemma

Define

$$X = \bigcup_{0 \le n} f^n(A - B)$$

Claim: The desired bijection is

$$h(x) = \begin{cases} f(x) & \text{if } x \in X \\ x & \text{otherwise} \end{cases}$$

Proving the Lemma

Proof of Claim:

- h is injective: Suppose h(x) = h(y). If $x, y \in X$ then x = y since f is injective. If $x, y \notin X$ then x = y by the definition of h. Finally, $f(X) \subset X$ so we cannot have precisely one of x, y in X.
- h is surjective: Suppose we have $y \in B$. If $y \in X$, then $y \in f^n(A B)$ for some $1 \le n$. Therefore, there exists an $x \in f^{n-1}(A B) \subseteq X$ satisfying h(x) = f(x) = y. If $y \notin X$, then h(y) = y by the definition of h.

We have now proved the Schröder-Bernstein theorem.

Application: 1-to-1 Correspondence

Corollary: The sets A and B are in 1-to-1 correspondence if and only if there exist functions

$$f_1: A \to B$$

$$f_2: A \to B$$

where f_1 is injective and f_2 is surjective.

Reminder: Sets A and B are in 1-to-1 correspondence if there exists a bijective function $h:A\to B$.

Application: 1-to-1 Correspondence

Proof of Corollary:

- If A and B are in 1-to-1 correspondence then there is a bijection $h:A\to B$. Therefore, we can let $f_1=f_2=h$.
- Suppose we are given functions f_1, f_2 .
 - Define a function $g: B \to A$ by

$$g(y) =$$
an arbitrary x such that $f_2(x) = y$

- g is well-defined and injective, because f_2 is surjective and a function.
- Therefore, by Schröder-Bernstein, there exists a bijection h : A → B and so the sets A and B are in 1-to-1 correspondence.

Application: 1-to-1 Correspondence

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Example: Prove that $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and \mathbb{N} are in 1-to-1 correspondence.

Before, we (annoyingly) had to come up with a bijection^a

$$f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

• Applying the corollary, we (simply) need an injection f_1 and a surjection f_2 :

$$f_1(k, m, n) = 2^k 3^m 5^n$$

$$f_2(k, m, n) = k$$

$${}^{\mathbf{a}}f(k,m,n) = 2^k(2(2^m(2n+1)-1)+1)-1$$