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A Simple Process Calculus

We introduce a simple process calculus (consisting

of operators taken from Milner’s CCS) in which

to write our examples and motivate bisimulation.

Fix a set A of actions containing the internal

action τ .

Write E
a−→ F if process E becomes process F

after performing action a ∈ A.
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A Simple Process Calculus

Prefix Axiom: a.E
a−→ E

So after making the definition Cl = tick .Cl, we can

apply the axiom to derive Cl
tick−→ Cl, and the

process Cl models an idealised clock.

This can be visualised in a labelled transition

system:

tick
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A Simple Process Calculus

Choice Rule:

∃ i ∈ I. Ei
a−→ F(∑

i∈I Ei
) a−→ F

We often make use of the binary choice +

operator and the nil process 0, both special cases.

As an example of this consider the family of

processes

Cli = tick .tick . . . tick .︸ ︷︷ ︸
i times

0

Now the process

Clock =
∑

i∈N
Cli

models a clock that will eventually break down.
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A Simple Process Calculus

Let every action a ∈ A have a co-action ā ∈ A,

satisfying ¯̄a = a.

Concurrent composition rules:

E
a−→ E′

E|F a−→ E′|F
F

a−→ F′

E|F a−→ E|F′

E
a−→ E′ F

ā−→ F′

E|F τ−→ E′|F′
a, ā 6= τ

Abstraction rules:

E
a−→ F

E\J a−→ F\J
a, ā /∈ J

where J ⊂ A is a subset of possible actions.
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A Simple Process Calculus

An example process modelling a level crossing:

Road = car .up.ccross.down.Road

Rail = train.green.tcross.red .Rail

Signal = green.red .Signal + up.down.Signal

Crossing = (Road|Rail|Signal)\
{green, red , up, down}
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The Simulation Game

The simulation game S(E0,F0) is played by

Spoiler and Duplicator. A play of the game is a

sequence of positions (E0,F0), (E1,F1), . . .

determined by the following rules:

If (Ei,Fi) is the current position, then Spoiler

chooses a transition Ei
a−→ Ei+1 and then

Duplicator chooses a transition Fi
a−→ Fi+1.

If Duplicator cannot match Spoiler’s action then

Spoiler has won. If Spoiler cannot make a move

or the play goes on forever, then Duplicator has

won. These are mutually exclusive.

Note: we could instead play these games with the

observable transitions

E
a

=⇒ F = E
τ∗−→ E′

a−→ F′
τ∗−→ F a 6= τ
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The Simulation Game

As an example consider the following two vending

machine processes:

V1 = 10p.(tea.V1 + coffee.V1)

V2 = 10p.tea.V2 + 10p.coffee.V2

coffee10ptea
10p 10p

tea coffee
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The Simulation Game

A strategy for Spoiler is a (necessarily partial)

function from a pair of processes (E,F) to a

transition E
a−→ E′.

A strategy for Duplicator is a (partial) function

from a transition E
a−→ E′ and a process F to a

transition F
a−→ F′.

A strategy π is a winning strategy if π wins all

possible plays.

Proposition: The simulation game defines a

pre-order on processes, where E � F iff Duplicator

has a winning strategy for the game S(E,F).

Note: this idea of simulation is useful for refining

a design interface A to a functional

implementation B in a sequence of steps:

A = E0 � E1 � · · · � En = B
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The Bisimulation Game

The bisimulation game B(E0,F0) is the same as

the simulation game S(E0,F0), except that at

each stage Spoiler can now choose to make a

transition either from Ei or from Fi, and

Duplicator must match it in the other process.

Proposition: If Spoiler can win S(E,F) then he

can win B(E,F).

Equivalently: If Duplicator can win the

bisimulation game B(E,F) then she can win the

simulation games S(E,F) and S(F,E).

But is the converse true?
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The Bisimulation Game

Counter-example:

a aa a

cb cb

c b
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The Bisimulation Game

Say two processes E and F are game-equivalent if

Duplicator has a winning strategy for B(E,F).

A binary relation R between processes is a

bisimulation if for all (E,F) ∈ R and a ∈ A:

1. if E
a−→ E′ then there exists an F′ such that

F
a−→ F′ and (E′,F′) ∈ R.

2. if F
a−→ F′ then there exists an E′ such that

E
a−→ E′ and (E′,F′) ∈ R.

Say two processes E and F bisimulate (written

E ∼ F) if there exists a bisimulation relation R
containing (E,F).

Proposition: Two processes E and F are

game-equivalent iff E ∼ F.
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Modal Logic

Let M∞ be the following family of modal

formulas:

Φ ::=
∧

i∈I
Φi |

∨

i∈I
Φi | [K]Φ | 〈K〉Φ

where K ⊂ A, and I is an arbitrary index set.

The following inductive stipulation defines when a

process E has a modal property Φ, written E |= Φ

E |=
∧

i∈I
Φi ≡ ∀ i ∈ I. E |= Φi

E |=
∨

i∈I
Φi ≡ ∃ i ∈ I. E |= Φi

E |= [K]Φ ≡ ∀F. ∀ a ∈ K. E
a−→ F⇒ F |= Φ

E |= 〈K〉Φ ≡ ∃F. ∃ a ∈ K. E
a−→ F ∧ F |= Φ
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Modal Logic

Write E
M∞≡ F if ∀Φ ∈M∞. (E |= Φ iff F |= Φ).

Theorem: E ∼ F iff E
M∞≡ F.

Proof : ⇒: By induction on modal formulas:

Suppose E |= [K]Φ. To show that F |= [K]Φ, we

must show that F′ |= Φ for F
a−→ F′ and a ∈ K.

Since E ∼ F, we can find E
a−→ E′ with E′ ∼ F′.

Now we are done by the induction hypothesis.

⇐: Show by contradiction that the relation

{(E,F) : E
M∞≡ F} is a bisimulation.

This is a modal characterization of bisimulation,

due to Hennessey and Milner.
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Modal Logic

Why the need for infinite conjunctions and

disjunctions?

Let M denote the subset of M∞ restricted to

finite conjunctions and disjunctions.

Consider the simulation game S(Cl,Clock). This

is clearly a win for Spoiler, since Duplicator’s

clock is eventually going to break down.

Therefore B(Cl,Clock) is also a win for Spoiler,

but Cl
M≡ Clock.

This occurs because there are an infinite number

of transitions from Clock with the same action.

On the set of processes where this is forbidden

(called image finite processes), M-equivalence is

the same as bisimulation.
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