
Bridging Equality Reasoning and Logical Proving 1

Attempts to Bridge the Gap

between Equality Reasoning

and Logical Proving

Joe Hurd

University of Cambridge

1. What Gap?

2. Congruence Classes with Logic Variables

3. Proving without Normalisation

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 2

What Gap?

Many of the best modern automatic provers

perform a rewriting stage, then a logical proving

phase. They will miss many theorems that

require interleaving.

But interleaving really would be helpful: logical

proving would benefit from tightly-coupled

equality reasoning to expand definitions, perform

rewriting to normal form, and cope with

if-then-else expressions.

Similarly, equality reasoning would benefit from

tightly-coupled logical proving to better deal with

conditional equalities.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 3

Congruence Classes

with Logic Variables

Goals:

1. Take something strong at equality reasoning,

and make it a bit more user-friendly for

adding logical proving steps.

2. An efficient way of storing terms, whatever

the application.

We just add terms with logic variables, and

congruence closure treats them as constants.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 4

Matching Algorithm

We can perform matching between classes

‘modulo’ the equalities implicit in the congruence

classes.

Build up matches inductively:

During iniatialisation, add in logic variable

matches and ‘reflexive’ matches.

For step case, if we have app(Ci, Cj) in a class C,

can use current matches to Ci and Cj to add

more matches to C.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 5

Matching Algorithm (contd)

aP

PAPF

Pf

F

f

A

a

Y

Y

X

X

X

APP([F], [A]) [APP([F], [A])]

[F] [A]

[f] [a]

APP([f], [a]) [APP([f], [a])]

[X]

S S S’ S’SuS’ SuS’

S

S

P
X is an element in the class with representative [X] (with proof P)

X matches to Y using substitution S

a term equal to X matches to a term equal to Y (using substitution S)

Pi

jP

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 6

Percolation Algorithm

This makes use of the Matching Algorithm to

perform undirected rewriting.

jC

Ci

S S S

t

t’

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 7

Test Examples

Ex Lv Theorem

1 1 (∀x. f(f(x)) = g(x))

⇒ (f(g(a)) = g(f(a)))

2 2 (∀x y z. ((x ◦ y) ◦ z = x ◦ (y ◦ z))
∧ (e ◦ x = x) ∧ (i(x) ◦ x = e))

⇒ (x ◦ i(x) = e)

3 1 a ∗ b ∗ c = c ∗ b ∗ a
4 2 a ∗ b ∗ c ∗ d = d ∗ c ∗ b ∗ a
5 2 a ∗ b ∗ c ∗ d ∗ e

= e ∗ d ∗ c ∗ b ∗ a
6 3 (a+ 1) ∗ (a+ 1)

= a ∗ a+ a+ a+ 1

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 8

Proving without Normalisation

Goals:

1. Combining proof tools like first-order provers,

rewriters and decision procedures.

2. Would like human proof steps to roughly

correspond 1-1 to automatic proof steps, so

that there is a better correlation between

obviousness in human terms and practical to

prove in automatic terms.

3. An automatic tool that can perform a partial

proof, and deliver understandable subgoals to

the user.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 9

Concepts

We perform ‘usual’ proof steps, creating logic

variables for ∃ on a goal (or ∀ on a fact). Also

when we remove a leading ∀ from a goal (or ∃
from a fact) we make it a function of all the logic

variables in the term to preserve soundness.

When we change a goal we create a new context,

and try to solve the new goal inside it (the

contexts form a large tree). This device allows us

to replace the goal A⇒ B with the fact A and

the new goal B, without the fact being used

inappropriately.

Every fact also carries around its proof, and if the

search is successful the original goal will turn into

a fact with proof. It is then possible to then

translate this proof to a regular HOL proof.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 10

An Example

Start with a root context, containing:

goal (P1⇒ Q2)⇒ (∃x. Px⇒ Qx)

A child context is created, in which we have:

fact P1⇒ Q2

goal ∃x. Px⇒ Qx

Now we create a child context of this one:

goal PX ⇒ QX

Another child context:

fact PX

goal QX

Another child context (by back-chaining):

goal P1

And this is solved by the fact PX in the parent

context.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 11

Translation

If there are any uninstantiated logic variables in

the proof, the original goal must be true in all

instantiations, so we can instantiate them to

arbitrary elements of the type before we begin.

Since the proof steps are designed to be analogous

to HOL steps, once the logic variables have

disappeared the proof translation is

straightforward.

There are 2 difficult cases.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 12

Difficulty 1

Joining Together Two Halves of an Implication

(as occurs in the example):

We had an original goal A⇒ B, we created a

context in which we put the new goal B and the

fact A, and we have a proof of B within this

context. How can we extract a proof of A⇒ B?

The problem is that there might be a logic

variable X in both A and B that has been

instantiated in order to prove B and also

differently instantiated (perhaps multiple times)

in A used in the proof of B.

In the example, X is instantiated to 2 in B and 1

in A.

Not valid to claim either P1⇒ Q1 or P2⇒ Q2

(no proof of these).

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 13

Solution 1

If b is the instantiation of X in B, and

a1, a2, . . . , an are the instantiations of X in A

used in the proof of B, then we CAN claim

A⇒ B with X set to:

if A[a1/X] then

if A[a2/X] then

. . .

if A[an/X] then

b

else an

. . .

else a2

else a1

Since this makes A false if any of A[ai/X] are

false, and B true otherwise.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 14

Solution 1 contd

Now we can show the proof translation of the example.

In the root context:

goal (P1⇒ Q2)⇒ (∃x. Px⇒ Qx)

proof ` (P1⇒ Q2)⇒ (∃x. Px⇒ Qx)

The first child context:

fact P1⇒ Q2

goal ∃x. Px⇒ Qx

proof [P1⇒ Q2] ` ∃x. Px⇒ Qx

A child context of this one:

goal PX ⇒ QX

proof [P1⇒ Q2] ` P (if P1 then 2 else 1)⇒
Q(if P1 then 2 else 1)

Another child context:

fact PX

goal QX

proof [P1, P1⇒ Q2] ` Q2

Another child context (by back-chaining):

goal P1

proof [P1] ` P1

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 15

Difficulty 2

∀ Variables in a Goal can Escape their Scope!

Consider the goal ∃x. ∀y. Px⇒ Py.

This is how it is proved:

root context:

goal ∃x. ∀y. Px⇒ Py

child context:

goal ∀y. PX ⇒ Py

child context:

goal PX ⇒ P (yX)

child context:

fact PX

goal P (yZ)

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 16

Difficulty 2 contd

This is how the proof is translated:

root context:

goal ∃x. ∀y. Px⇒ Py

proof AARGH!

child context:

goal ∀y. PX ⇒ Py

proof ` ∀y.P (if Py then Z else y)⇒ Py

child context:

goal PX ⇒ P (yX)

proof ` P (if P (yZ) then Z else (yZ))⇒
P (y(if P (yZ) then Z else (yZ)))

child context:

fact PX

goal P (yZ)

proof [P (yZ)] ` P (yZ)

We want x to map to (if Py then Z else y), but it

contains a y.

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 17

Solution 2

Instead of just replacing the bound variable y in

the goal with a free variable of the same name,

replace the bound variable with a new variable

with the definition:

h = λx. (εy. ¬(Px⇒ Py))

Now h will escape the scope of y, but it doesn’t

matter, it can exist in any scope. The only thing

we must remember to do is erase all the

definitions from the assumptions at the very end

of the proof translation (taking care to erase them

in the right order, since they might depend on

each other!).

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 18

Solution 2 contd

Now the proof becomes:

root context:

goal ∃x. ∀y. Px⇒ Py

proof [h = λx. (εy. ¬(Px⇒ Py))] ` ∃x. ∀y. Px⇒ Py

child context:

goal ∀y. PX ⇒ Py

proof [h = λx. (εy. ¬(Px⇒ Py))] `
∀y. P (if P (hZ) then Z else (hZ))⇒ Py

child context:

goal PX ⇒ P (hX)

proof ` P (if P (hZ) then Z else (hZ))⇒
P (h(if P (hZ) then Z else (hZ)))

child context:

fact PX

goal P (hZ)

proof [P (hZ)] ` P (hZ)

Joe Hurd University of Cambridge



Bridging Equality Reasoning and Logical Proving 19

Results

• Works on small examples, but get bogged

down very quickly.

• Next will most likely be adding congruence

closure at a low level, and then hopefully the

fast equality processing will make it a useful

tool.

• Perhaps could rewrite the goalstack code to

include logic variables, and then it could work

interactively.

• Suggestions welcome!

Joe Hurd University of Cambridge


