o N

Verifying Probabilistic Programs
using the HOL Theorem Prover

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.1/32

Contents

Introduction
Formalizing Probability

Modelling Probabilistic Programs
Example Verifications
Conclusion

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.2/32

Introduction

o N

e Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

1f length elements <= 1 then elements

else
let
val pivot = choose_pivot elements
val (left, right) = partition pivot elements
in

quicksort left @ [pivot] @ qgquicksort right

end;

e Usually O(nlogn) comparisons, unless choice of pivot
Interacts badly with data.

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.3/32

Introduction

o N

e Example of bad behaviour when pivot is first element:

input: (5, 4, 3, 2, 1]
pivot 5: [4, 3, 2, 1]1--5--[]
pivot 4: (3, 2, 1]-——4——1]
pivot 3: [2, 1]1--3--[]

pivot 2: [1]--2--1[]

output: [1, 2, 3, 4, 5]

e Lists in reverse order take O(n?) comparisons.
e So do lists that are in the right order!

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.4/32

Introduction

e Solution: Introduce randomization into the algorithm
itself.

e Pick pivots uniformly at random from the list of
elements.

e Every list has exactly the same performance profile:

Expected number of comparisons is O(nlogn).

Small class C c S, of lists with guaranteed bad
performance has been replaced with a small
probability |C'|/n! of bad performance on any input.

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.5/32

Introduction

e Broken procedure for choosing a pivot:

fun choose_pivot elements =
1f length elements = 1 orelse coin_flip ()
then hd elements

else choose_pivot (tl elements);

e Not a uniform distribution when length of elements > 2.

o Actually reinstates a bad class of input lists taking O(n?)
(expected) comparisons.

e Would like to verify probabilistic programs in a theorem
prover.

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.6/32

Motivation

TOUR OF ACCOUNTING l e
NIMNE NINE ST THAT'S THE
OVER HERE NINE NINE SORE PROBLEM
WE HAVE OUR NINE NINE gl Euﬂx:&:%m-
RANDOM NUMBER :
RANDOM? yn iy cAN

s, GENERATOR.

NMEVER BE
SURE.

[2]asfo) @ 2001 United Festure Syndicabe, inc,

JFl
wwrwLdilbert.com scotiadams®acl.com

Copyright 2 2881 United Feature Syndicate, [ho.

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.7/32

Contents

Introduction

Formalizing Probability

Modelling Probabilistic Programs
Example Verifications
Conclusion

The HOL Theorem Prover
-

Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOLSS.

_atest release in mid-2002 called HOL4, developed
jointly by Cambridge and Utah.

mplements classical Higher-Order Logic with
Hindley-Milner polymorphism.

Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc. |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.9/32

Verification in HOL

o N

To verity a probabilistic program in HOL.:
e Must be able to formalize its probabilistic specification;
E:P(PB>®), P:&£—-R
e and model the probabilistic program in the logic;
prob_program : N — B~ — {success, failure} x B

e then finally prove that the program satisfies its
specification.

=Vn.P{s | fst (prob_program n s) = failure} < 27"

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.10/32

Formalizing Probability
- -

 Need to construct a probability space of Bernoulii(5)
sequences, to give meaning to specifications like

P{s | fst (prob_program n s) = failure}

e To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

e Use measure theory, and end up with a set £ of events
and a probability function P:

E = {ScCB>|Sisameasurable set}
P(S) = the probability measure of S (for S € £)

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.11/32

Formalizing Probability

-

Formalized some general measure theory in HOL,
including Carathéodory’s extension theorem.

Next defined the measure of prefix sets (or cylinders):
V. ¥ {808182 s ‘ [S(), Ceey Sn—l] = l} = 2—(Iength)
Finally extended this measure to a o-algebra:

E = o(prefix sets)
P = Carathéodory extension of yto £

Similar to the definition of Lebesgue measure.

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.12/32

Contents

-

e Introduction
e Formalizing Probability

. Modelling Probabilistic
Programs

e Example Verifications
e Conclusion

Modelling Probabilistic Programs
-

e Given a probabilistic ‘function’:

A

fra—p
o Model f with a higher-order logic function
f:ra— B* — 0 x B>

that passes around ‘an infinite sequence of coin-flips.

 The probability that f(a) meets a specification
B : 7 — B can then be formally defined as

P{s| B(fst (f as))}

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.14/32

Modelling Probabilistic Programs

o N

e Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unita = M\s. (a,s)
bind fg = Ms.let (z,58) « f(s)ingazs
coin_flip f g = As. (if shd s then f else g, stl s)

e For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (A z. bind dice (Ay. unit (z +v)))

generates the sum of two dice.

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.15/32

Example: The Binomial(n,) Distribution

-

o Definition of a sampling algorithm for the Binomial(n,)
distribution:

- bit = coin_flip (unit 1) (unit 0)
~ binomial 0 = unit 0 A
Vn.

binomial (suc n) =
bind bit (A z. bind (binomial n) (Ay. unit (z +v)))

e Correctness theorem:

r

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.16/32

~ W, P{s| fst (binomial n) = 1} = <n> (1)"

Probabilistic Termination

o The Binomial(n, 5) sampling algorithm is guaranteed to
terminate within n coin-flips.

e The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

e The backward loops

3)
it introduce the possibility

of looping forever.

e But the probability of this
happening is 0.

At
I
S .
e Probabilistic termination:
the program terminates
with probability 1. N

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.17/32

Probabilistic Termination

-

e Probabilistic termination is more expressive than
guaranteed termination.

e No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:

Uniform(3): choosing one of 0, 1, 2 each with
probability .

Geometric(3): choosing n € N with probability (3)"*.
The index of the first head in a sequence of coin-flips.

e We model probabilistic termination in HOL using a
probabilistic while loop:

= Ve b,a.
\— while ¢ b a = if ¢(a) then bind (b a) (while ¢ b) else unit U

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.18/32

Contents

Introduction
Formalizing Probability
Modelling Probabilistic Programs

Example Verifications

Conclusion

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.19/32

Example: The Uniform(3) Distribution

o N

e First make a raw definition of unif3:

= unif3 =
while (An. n = 3)
(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

e Next prove unif3 satisfies probabilistic termination.

e Then independence must follow, and we can use this to
derive a more elegant definition of unif3:

= unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

e The correctness theorem also follows:

L - V. P{s|fst (unif3 s) = n} =if n < 3 then i else 0 J

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.20/32

Example: Optimal Dice

fA probabilistic finite state automaton:

dice =
coin_flip

(prob_repeat
(coin_flip
(coin_flip
(unit none)
(unit (some 1)))
(mmap some
(coin_flip
(unit 2)
(unit 3)))))
(prob_repeat
(coin_flip
(mmap some
(coin_flip
(unit 4)
(unit 5)))

(coin_flip

(unit (some 6))
(unit none)))) J

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.21/32

Example: Optimal Dice
-

- Vn.P{s|fst (dice s) =n} =if 1 <nAn <6then ¢ else 0

Correctness theorem:

The dice program takes 3z coin flips (on average) to
output a dice throw.

Knuth and Yao (1976) show this to be optimal.

To generate the sum of two dice throws, is it possible to
do better than 73 coin flips?

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.22/32

Example: Optimal Dice

fOn average, this program
takes 4-% coin flips to pro-
duce a result, and this is
also optimal.

- Vn.
P{s | fst (two_dice s) =n} =
if n=2Vn=12then &

36
elseifn:3\/n:11then%
elseifn:4\/n:1Othen33—6

- _ _ 4
elseif n =5V n=9then 36
- _ _ 5
elseif n =6V n = 8 then 36
- _ 6
else if n = 7 then 36

else 0

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.23/32

Example: Random Walk
-

e A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point O.

heads tails

° ° ° ° ° ° ° ° ° ° ° °
0 | -1 1 1+l n
/t HOME /I\ /t PUB

flips coin

e Will the drunk always get home?

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.24/32

Example: Random Walk

o N

e We can formalize the random walk as a probabilistic
program:
= Vn. lurch n = coin_flip (unit (n 4+ 1)) (unit (n — 1))
= VYV f,b,a, k. cost fb(a,k)=Dbind (b(a)) (Aa'. unit (a’, f(k)))
- Vn, k.
walk n k =
bind (while (A (n,_). 0 < n) (cost suc lurch) (n,k))
(A(_, k). unit k)

o “Will the drunk always get home?”
IS equivalent to
L “Does walk satisfy probabilistic termination?” J

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.25/32

Example: Random Walk
-

e Perhaps surprisingly, the drunk does always get home.

o We formalize the proof of this in HOL
This shows the probabilistic termination of walk.
And as usual, independence immediately follows.

e Then we can derive a more natural definition of walk:

- Vn, k.
walk n k =
If n = 0 then unit k& else

coin_flip (walk (n+1) (k+1)) (walk (n—1) (k+1))
e And prove some neat properties:

_ = Vn, k. Vs. even (fst (walk n k s)) = even (n + k) J

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.26/32

Example: Random Walk
-

Can extract walk to ML and simulate it.
Use high-quality random bits from /dev/random.

A typical sequence of results from random walks
starting at level 1:

57,1,7,173,5,49,1,3,1,11,9,9,1,1,1547,27,3,1,1,1, . ..

Record breakers:
34th simulation yields a walk with 2645 steps
135th simulation yields a walk with 603787 steps
664th simulation yields a walk with 1605511 steps

Expected number of steps to get home is infinite!

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.27/32

Example: Miller-Rabin Primality Test
- -

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

= Vn,t,s. primen = fst (millernts)=T
= Vn,t. —primen = 1—-27"<P{s|fst (millernts)= 1}

Here n is the number to test for primality, and ¢ is the
maximum number of iterations allowed.

o |

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.28/32

Example: Miller-Rabin Primality Test

-

e Can define a pseudo-random number generator in

B

HOL, and interpret miller in the logic to prove numbers

composite:

- ﬂprime(Z26 +1) A ﬂprime(Z27 +1) A ﬂprime(228 + 1)

e Or can manually extract miller to ML, and execute it
using /dev/random and calls to GMP:

bits E;n MR Gen time MR; time
500 99424 99458 0.0443 0.2498
1000 99712 99716 0.0881 0.7284
2000 99856 99852 0.3999 4.2910

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.29/32

Contents

Introduction

Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Conclusion

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.30/32

Conclusion

-

Feasible to verify probabilistic programs in a theorem
prover, ‘just like deterministic programs.

Requires much interactive proof to verify each
algorithm, with heavy use of automatic proof tools. ..

... but once verified, probabilistic programs can then be
used as building blocks in higher-level ones.

Fixing on coin-flips creates a distinction between
guaranteed termination and probabilistic termination.

Aim for a library of verified probabilistic programs, with
ML extractions available.

Also need more theory: randomized quicksort (and
many others) will require expectation.

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.31/32

Related Work
-

Semantics of Probabilistic Programs, Kozen, 1979.

Probabilistic model checking, Kwiatkowska, Norman,
Segala and Sproston, 2000.

Termination of Probabilistic Concurrent Processes,
Hart, Sharir and Pnueli, 1983.

Probabilistic predicate transformers, Morgan, Mclver,
Seidel and Sanders, 1994

Notes on the Random Walk: an Example of
Probabilistic Temporal Reasoning, 1996

Proof Rules for Probabilistic Loops, Morgan, 1996

|

Verifying Probabilistic Programs using the HOL Theorem Prover — Joe Hurd — p.32/32

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Motivation
	Contents
	The HOL Theorem Prover
	Verification in HOL
	Formalizing Probability
	Formalizing Probability
	Contents
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Probabilistic Termination
	Probabilistic Termination
	Contents
	Example: The $Uniform {3}$ Distribution
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Miller-Rabin Primality Test
	Example: Miller-Rabin Primality Test
	Contents
	Conclusion
	Related Work

