o N

HOL Theorem Prover Case Study:
Verifying Probabilistic Programs

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.1/17

The HOL Theorem Prover
-

Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOLSS.

Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

|

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.2/17

The HOL Theorem Prover
-

To verify a probabilistic algorithm in HOL.:

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.3/17

The HOL Theorem Prover

o N

To verify a probabilistic algorithm in HOL.:

e Must be able to formalize its probabilistic specification;

E:P(PB>)), P:£&—R

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.3/17

The HOL Theorem Prover

o N

To verify a probabilistic algorithm in HOL.:
e Must be able to formalize its probabilistic specification;
E:PPBX), P:&—-R
e and model the probabilistic algorithm in the logic;

prob_program : N — B”° — {success, failure} x B

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.3/17

The HOL Theorem Prover

o N

To verify a probabilistic algorithm in HOL.:
e Must be able to formalize its probabilistic specification;
E:PPB®), P:&—-R
e and model the probabilistic algorithm in the logic;
prob_program : N — B”° — {success, failure} x B

e then finally prove that the algorithm satisfies its
specification.

= Vn.P{s| fst (prob_program n s) = failure} < 27"

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.3/17

-

Formalizing Probability

e Need to construct a probability space of Bernouilli(

oo

DO —

sequences, to give meaning to such terms as

P {s | fst (prob_program n s) = failure}

e To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

e Use measure theory, and end up with a set £ of events
and a probability function P:

P(S5)

{S C B> | S is a measurable set}
the probability measure of S (for S € &)

|

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.4/17

Modelling Probabilistic Algorithms

o N

e Suppose a probabilistic ‘function’:

A

fra—=p0
e Model f with a higher-order logic function
f:a— B> — 0 x B>

that passes around ‘an infinite sequence of coin-flips.

o The probability that f(a) meets a specification
B : — B can then be formally defined as

P{s | B(fst (f as))}

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.5/17

Modelling Probabilistic Algorithms

o N

e Can use state-transformer monadic notation to express
HOL models of probabilistic algorithms:

unita = MAs. (a,s)
bind fg = Ms.let (z,58) « f(s)ingaxz s

e For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (A z. bind dice (Ay. unit (z +vy)))

generates the sum of two dice.

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.6/17

Example: The Binomial Distribution

o N

e Definition of a sampling algorithm for the binomial
distribution:

= bit = As. (if shd s then 1 else 0, stl s)
= bin0=unit0 A
Vn.
bin (suc n) =
bind bit (A z. bind (bin n) (Ay. unit (x + y)))

e Correctness theorem:

- W, P {s | fst (binns) =r} = (n) (3)"

r

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.7/17

Example: A Dice Program

fA dice program, due to Knuth (1976):

dice =
coin_flip

(prob_repeat
(coin_flip
(coin_flip
(unit none)
(unit (some 1)))
(mmap some
(coin_flip
(unit 2)
(unit 3))))
(prob_repeat
(coin_flip
(mmap some
(coin_flip
(unit 4)
(unit 5)))

(coin_flip

(unit (some 6))
(unit none)))) J

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.8/17

Comparison: Prism Model Checker

o N

e Prism is a probabalistic model checker developed by
Kwiatkowska et. al. at the University of Birmingham.

e Prism version of dice program:

probabilistic

module dice

s [0..7] init 0; // local state
d : [0..6] init 0; // wvalue of the dice
[] s=0 -=> 0.5 : s’'=1 + 0.5 s’'=2;
[] s=1 —> 0.5 : s'=3 + 0.5 s’ =4;
[] s=2 —> 0.5 : s’'=5 + 0.5 s’ =6;
[] s=3 -=> 0.5 : s'=1 + 0.5 : s'=7 & d’'=1;
[] s=4 —> 0.5 : s'=7 & d’'=2 + 0.5 : s'=7 & d'=3;
[] s=5 —> 0.5 : s'=7 & d’=4 + 0.5 : s’'=7 & d’'=5;
[] s=6 —> 0.5 : s'=2 + 0.5 : s'=7 & d’'=6;
[] s=7 —-> s'=7;
endmodule

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.9/17

-

Comparison: Prism Model Checker

-

Prism evaluates the result probabilities in less
than a second:

P [true U s=7 & d=k] = 0.1660666...

Foreach £k =1,...,6, result accurate to 6 decimal places.

HOL correctness theorem spans ~ 100 lines of interactive
proof script:

= Vn. P{s|fst (dices):n}:if1§n§6then%elseO

|

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.10/17

Comparison: Prism Model Checker

fThis program calculates T
the sum of two dice.

HOL: large term, clumsy

Prism:
F Vn. 6
P{s | fst (two_dice s) =n} =
if n=2VvVn=12then %

elseif n =3V n =11 then %
10]
elseifn:4\/n:10then% o

elseif n =5V n =9 then %

elseif n =6V n = 8 then %

else if n = 7 then S

36
else O

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.11/17

Comparison: Prism Model Checker

o N

e Probabilistic model checkers (such as Prism)
e have automatic operation,
e but can only verify probabilistic finite state automata.
o Perhaps better suited as an embedded verification
tool, in a compiler or program synthesizer?
e Theorem provers (such as HOL)
e require interactive proof,
e but can represent any probabilistic program.

o Perhaps better suited for ‘one-off’ verifications of
textbook probabilistic algorithms?

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.12/17

Example: Miller-Rabin Primality Test
- -

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

Can verify the test using our HOL model of probabilistic
programs:

= Vn,t s.primen = fst (millernts)=T
= Vn,t. —primen = 1 —-27"<P{s|fst (millernts)= 1}

Here n is the number to test for primality, and ¢ is the
maximum number of iterations allowed.

Took ~ 1000 lines of interactive proof script.

|

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.13/17

Comparison: Coq Theorem Prover

o .

e Coqg theorem prover for constructive logic, developed by
Barras et. al. at INRIA, France.

e Recent work by Paulin, Audebaud and Lassaigne
allows probabilistic programs to be formalized in Coq.

e Model uses the probability distribution monad
7= (17— [0,1]) — [0,1]:
flip: B = Af:B —[0,1]. f(T)/2+ f(L)/2
v4py:7T = Af 7= [0,1] p(x(f)) + (1 =p)(w(/f))
):Z = A :Z—]0,1]. Zf

1<i<n

random(n

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.14/17

Comparison: Coq Theorem Prover

o N

Can model the Miller-Rabin test in Coq:

witness n a
= a°=1 (modn) V35.0<5<r A 0¥ = —1 (mod n)
(where n — 1 =2"s, and s odd)
miller nt
;= 1if n =0 thenunit T
else
bind (bind (random (n — 1)) (Aa. unit (witness n a)))
(Ab. if b thenmiller n (t — 1) else unit 1)

Meta-language evaluation of miller 9 3 shows that the
Lprobability that 9 is declared composite is 98.4375%.

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.15/17

Comparison: Coq Theorem Prover

o N

e The Coq theorem prover

e can execute probabilistic programs using fast
meta-level evaluation,

e but measure theory is hard in constructive logic.
o Perhaps better suited for high-assurance
calculations of probabilities and expectations?
e The HOL theorem prover
e is slow to execute programs inside the logic,

e but contains a formalized measure theory ready to
verify probabilistic programs.

o Perhaps better suited for outright verification of
probabilistic programs?

o |

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.16/17

And Finally

ae. GENERATOR.

TOUR OF ACCOUNTING &’ AR
MIME MINE :; YOU THAT'S THE
OVER HERE NINE NINE H cure PROBLEM
WE HAVE OUR NIME MINE £ THAT'S Eé;i;%ﬂ-
RANDOM NUMBER : :
: RANDOM? YOU CAN
E

NEVER BE
SURE.

LA
www. dilbert.com scottadama®aal.com

&8
. W

Copyr-ight o 2881 United Featurse Syndicate, lnc.

ie|asfo @ 2001 1

Slides for this talk available at:
Lhttp ://www.cl.cam.ac.uk/ jehl004/research/talks/ J

HOL Theorem Prover Case Study: Verifying Probabilistic Programs — Joe Hurd — p.17/17

http://www.cl.cam.ac.uk/~jeh1004/research/talks/

	The HOL Theorem Prover
	The HOL Theorem Prover
	Formalizing Probability
	Modelling Probabilistic Algorithms
	Modelling Probabilistic Algorithms
	Example: The Binomial Distribution
	Example: A Dice Program
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Example: Miller-Rabin Primality Test
	Comparison: Coq Theorem Prover
	Comparison: Coq Theorem Prover
	Comparison: Coq Theorem Prover
	And Finally

