
HOL Theorem Prover Case Study:
Verifying Probabilistic Programs

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.1/17

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

• Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

• Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.2/17

The HOL Theorem Prover

To verify a probabilistic algorithm in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic algorithm in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the algorithm satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.3/17

The HOL Theorem Prover

To verify a probabilistic algorithm in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic algorithm in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the algorithm satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.3/17

The HOL Theorem Prover

To verify a probabilistic algorithm in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic algorithm in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the algorithm satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.3/17

The HOL Theorem Prover

To verify a probabilistic algorithm in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic algorithm in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the algorithm satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.3/17

Formalizing Probability

• Need to construct a probability space of Bernoulli(1
2)

sequences, to give meaning to such terms as

P {s | fst (prob_program n s) = failure}

• To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

• Use measure theory, and end up with a set E of events
and a probability function P:

E = {S ⊂ B∞ | S is a measurable set}
P(S) = the probability measure of S (for S ∈ E)

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.4/17

Modelling Probabilistic Algorithms

• Suppose a probabilistic ‘function’:

f̂ : α→ β

• Model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

that passes around ‘an infinite sequence of coin-flips.’

• The probability that f̂(a) meets a specification
B : β → B can then be formally defined as

P {s | B(fst (f a s))}

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.5/17

Modelling Probabilistic Algorithms

• Can use state-transformer monadic notation to express
HOL models of probabilistic algorithms:

unit a = λ s. (a, s)

bind f g = λ s. let (x, s′)← f(s) in g x s′

• For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (λx. bind dice (λ y. unit (x+ y)))

generates the sum of two dice.

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.6/17

Example: The Binomial Distribution

• Definition of a sampling algorithm for the binomial
distribution:

` bit = λs. (if shd s then 1 else 0, stl s)

` bin 0 = unit 0 ∧
∀n.

bin (suc n) =

bind bit (λx. bind (bin n) (λ y. unit (x+ y)))

• Correctness theorem:

` ∀n, r. P {s | fst (bin n s) = r} =

(
n

r

)(
1
2

)n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.7/17

Example: A Dice Program

A dice program, due to Knuth (1976):

1

2

3

4

5

6

0

dice =

coin flip

(prob repeat

(coin flip

(coin flip

(unit none)

(unit (some 1)))

(mmap some

(coin flip

(unit 2)

(unit 3)))))

(prob repeat

(coin flip

(mmap some

(coin flip

(unit 4)

(unit 5)))

(coin flip

(unit (some 6))

(unit none))))

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.8/17

Comparison: Prism Model Checker

• Prism is a probabalistic model checker developed by
Kwiatkowska et. al. at the University of Birmingham.
• Prism version of dice program:

probabilistic

module dice

s : [0..7] init 0; // local state

d : [0..6] init 0; // value of the dice

[] s=0 -> 0.5 : s’=1 + 0.5 : s’=2;

[] s=1 -> 0.5 : s’=3 + 0.5 : s’=4;

[] s=2 -> 0.5 : s’=5 + 0.5 : s’=6;

[] s=3 -> 0.5 : s’=1 + 0.5 : s’=7 & d’=1;

[] s=4 -> 0.5 : s’=7 & d’=2 + 0.5 : s’=7 & d’=3;

[] s=5 -> 0.5 : s’=7 & d’=4 + 0.5 : s’=7 & d’=5;

[] s=6 -> 0.5 : s’=2 + 0.5 : s’=7 & d’=6;

[] s=7 -> s’=7;

endmodule

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.9/17

Comparison: Prism Model Checker

Prism automatically evaluates the result probabilities in less
than a second:

P [true U s=7 & d=k] = 0.166666...

For each k = 1, . . . , 6, result accurate to 6 decimal places.

HOL correctness theorem spans ∼ 100 lines of interactive
proof script:

` ∀n. P {s | fst (dice s) = n} = if 1 ≤ n ≤ 6 then 1
6 else 0

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.10/17

Comparison: Prism Model Checker
This program calculates
the sum of two dice.

HOL: large term, clumsy

Prism: concise, automatic

` ∀n.
P{s | fst (two_dice s) = n} =

if n = 2 ∨ n = 12 then 1
36

else if n = 3 ∨ n = 11 then 2
36

else if n = 4 ∨ n = 10 then 3
36

else if n = 5 ∨ n = 9 then 4
36

else if n = 6 ∨ n = 8 then 5
36

else if n = 7 then 6
36

else 0

12

12

9

10

12

10

8

4

6

4

23

4

3 2

2

35

5

5

6

6

8

8

7

7

7

9

9

11

11

11

10

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.11/17

Comparison: Prism Model Checker

• Probabilistic model checkers (such as Prism)
• have automatic operation,
• but can only verify probabilistic finite state automata.
• Perhaps better suited as an embedded verification

tool, in a compiler or program synthesizer?

• Theorem provers (such as HOL)
• require interactive proof,
• but can represent any probabilistic program.
• Perhaps better suited for ‘one-off’ verifications of

textbook probabilistic algorithms?

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.12/17

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

Can verify the test using our HOL model of probabilistic
programs:

` ∀n, t, s. prime n ⇒ fst (miller n t s) = >
` ∀n, t. ¬prime n ⇒ 1− 2−t ≤ P {s | fst (miller n t s) = ⊥}

Here n is the number to test for primality, and t is the
maximum number of iterations allowed.

Took ∼ 1000 lines of interactive proof script.

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.13/17

Comparison: Coq Theorem Prover

• Coq theorem prover for constructive logic, developed by
Barras et. al. at INRIA, France.

• Recent work by Paulin, Audebaud and Lassaigne
allows probabilistic programs to be formalized in Coq.

• Model uses the probability distribution monad
τ̂ = (τ → [0, 1])→ [0, 1]:

flip : B̂ := λf : B→ [0, 1]. f(>)/2 + f(⊥)/2

x+p y : τ̂ := λf : τ → [0, 1]. p(x(f)) + (1− p)(y(f))

random(n) : Ẑ := λf : Z→ [0, 1].
∑

1≤i≤n
f(i)/n

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.14/17

Comparison: Coq Theorem Prover

Can model the Miller-Rabin test in Coq:

witness n a

:= as ≡ 1 (mod n) ∨ ∃ j. 0 ≤ j < r ∧ a2js ≡ −1 (mod n)

(where n− 1 = 2rs, and s odd)

miller n t

:= if n = 0 then unit >
else

bind (bind (random (n− 1)) (λa. unit (witness n a)))

(λb. if b then miller n (t− 1) else unit ⊥)

Meta-language evaluation of miller 9 3 shows that the
probability that 9 is declared composite is 98.4375%.

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.15/17

Comparison: Coq Theorem Prover

• The Coq theorem prover
• can execute probabilistic programs using fast

meta-level evaluation,
• but measure theory is hard in constructive logic.
• Perhaps better suited for high-assurance

calculations of probabilities and expectations?

• The HOL theorem prover
• is slow to execute programs inside the logic,
• but contains a formalized measure theory ready to

verify probabilistic programs.
• Perhaps better suited for outright verification of

probabilistic programs?

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.16/17

And Finally

Slides for this talk available at:
http://www.cl.cam.ac.uk/˜jeh1004/research/talks/

HOL Theorem Prover Case Study: Verifying Probabilistic Programs – Joe Hurd – p.17/17

http://www.cl.cam.ac.uk/~jeh1004/research/talks/

	The HOL Theorem Prover
	The HOL Theorem Prover
	Formalizing Probability
	Modelling Probabilistic Algorithms
	Modelling Probabilistic Algorithms
	Example: The Binomial Distribution
	Example: A Dice Program
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Comparison: Prism Model Checker
	Example: Miller-Rabin Primality Test
	Comparison: Coq Theorem Prover
	Comparison: Coq Theorem Prover
	Comparison: Coq Theorem Prover
	And Finally

