
Congruence Classes with Logic Variables 1

Congruence Classes

with Logic Variables

Joe Hurd

University of Cambridge

1. Motivation

2. Review of Congruence Classes

3. Matching Algorithm

4. Percolation Algorithm

Joe Hurd University of Cambridge



Congruence Classes with Logic Variables 2

Motivation

We have observed that the performance of

automatic first-order provers is much worse on

problems featuring equality, for example:

Thm: {∀x y z. (x ∗ y) ∗ z = x ∗ (y ∗ z)}
∧ {∀x. e ∗ x = x}
∧ {∀x. i(x) ∗ x = e}
⇒ x ∗ i(x) = e

Proof: e = i(x ∗ i(x)) ∗ (x ∗ i(x))

= i(x ∗ i(x)) ∗ (x ∗ (e ∗ i(x)))

= i(x ∗ i(x)) ∗ (x ∗ ((i(x) ∗ x) ∗ i(x)))

= i(x ∗ i(x)) ∗ ((x ∗ (i(x) ∗ x)) ∗ i(x))

= i(x ∗ i(x)) ∗ (((x ∗ i(x)) ∗ x) ∗ i(x))

= i(x ∗ i(x)) ∗ ((x ∗ i(x)) ∗ (x ∗ i(x)))

= (i(x ∗ i(x)) ∗ (x ∗ i(x))) ∗ (x ∗ i(x))

= e ∗ (x ∗ i(x))

= x ∗ i(x)

Joe Hurd University of Cambridge



Congruence Classes with Logic Variables 3

Review of Congruence Classes

Provers struggle because of the vast number of

ways of expressing a given term. Congruence

classes are a way of storing terms that maximizes

sharing of equal subterms, and this helps because:

• it uses less memory to store the terms;

• it performs the congruence closure decision

procedure, which can cut down the search;

• it allows the prover to deal with values,

instead of representations.

If our terms include logic variables, then

congruence closure will treat them as constants.

Can we provide anything more than this to the

client prover?

Joe Hurd University of Cambridge



Congruence Classes with Logic Variables 4

Matching Algorithm

We can perform matching between classes

‘modulo’ the equalities implicit in the congruence

classes.

Build up matches inductively:

• During initialization, add in logic variable

matches and ‘reflexive’ matches.

• For step case, if we have app(Ci, Cj) in a

class C, can use current matches to Ci and

Cj to add more matches to C.

Joe Hurd University of Cambridge



Congruence Classes with Logic Variables 5

Percolation Algorithm

This makes use of the Matching Algorithm to

perform undirected rewriting.

jC

Ci

PSfrag replacements
σσσ

t

σt
Ci

Cj

For every match σ between classes Ci and Cj , if

t ∈ Ci then we add σt to Cj .

Joe Hurd University of Cambridge


