o N

Verifying Multiple Compare and Swap
Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

o |

Verifying Multiple Compare and Swap — Joe Hurd — p.1/7



-

.

Introduction

This work shows how a parallel architecture can be
formalized in HOL, with many processors acting on a
shared memory.

Relevant to possible future work of the ARM project
(individual processors could be retargeted to ARM
Instruction set).

|

Verifying Multiple Compare and Swap — Joe Hurd — p.2/7



The Formalization Task

. .

Create a logical model of a parallel architecture, supporting
e independent execution of many processors
communicating only through a shared memory;

e arbitrary interleaving of instructions at the granularity of
the primitive atomic operations;

e plugging-in different memory models, with different
rules for access reordering and barrier instructions;

e automatic tools and techniques for specification and
verification of concurrent programs. ~-current work

o |

Verifying Multiple Compare and Swap — Joe Hurd — p.3/7



Parallel Architecture: Overview

o N

e Identify a processor with its register file:
processor = register — value

e The whole parallel architecture can then be modelled by
a list of processors and a shared memory:

architecture = memory x processor list

e The global state advances by any non-halted processor
executing a primitive atomic instruction.

o |

Verifying Multiple Compare and Swap — Joe Hurd — p.4/7



Parallel Architecture: Instruction Set

fAn instruction corresponds to a primitive atomic operation: T
instruction =

NOP

UP of value x register

RD of register x register

WR of register x register

CAS of register x register x register x register

ALLOC of N x register

MB

Some memory models (such as the Alpha) use memory barrier
L(M B) instructions to impose an ordering on accesses. J

Verifying Multiple Compare and Swap — Joe Hurd — p.5/7



The CAS(n) Algorithm
-

e A case study to investigate verification in our model.
e CAS(n) stands for Multiple Compare And Swap:

If the n memory addresses ai,...,an

contain the expected values T1,...,Tn

then replace them with the values y1,...,y,
(and this must all happen atomically!)

e A fast CAS(n) algorithm was recently developed by
Harris, Fraser and Pratt in Cambridge.

e So far has led to:
iInstruction macros to simplify programming;
L and a simulation engine to test arbitrary interleaving.J

Verifying Multiple Compare and Swap — Joe Hurd — p.6/7



Conclusion

-

We have laid out a formalization of a parallel
architecture in HOL.

We’re working on case studies to develop techniques for
specification and verification for a simple instantiation.

There’s scope for making the memory model more
realistic (c.f. Gordon’s model of the Alpha architecture),

and also the processor instruction set (c.f. Fox’s model
of the ARM).

The intention is that proofs completed for the simple
instantiation lift up to more realistic models (we’ll see).

|

Verifying Multiple Compare and Swap — Joe Hurd — p.7/7



	Introduction
	The Formalization Task
	Parallel Architecture: Overview
	Parallel Architecture: Instruction Set
	The CAS(n)
Algorithm
	Conclusion

