
Verifying Multiple Compare and Swap
Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Verifying Multiple Compare and Swap – Joe Hurd – p.1/7

Introduction

This work shows how a parallel architecture can be
formalized in HOL, with many processors acting on a
shared memory.

Relevant to possible future work of the ARM project
(individual processors could be retargeted to ARM
instruction set).

Verifying Multiple Compare and Swap – Joe Hurd – p.2/7

The Formalization Task

Create a logical model of a parallel architecture, supporting:

• independent execution of many processors
communicating only through a shared memory;

√

• arbitrary interleaving of instructions at the granularity of
the primitive atomic operations;

√

• plugging-in different memory models, with different
rules for access reordering and barrier instructions;

√

• automatic tools and techniques for specification and
verification of concurrent programs. current work

Verifying Multiple Compare and Swap – Joe Hurd – p.3/7

Parallel Architecture: Overview

• Identify a processor with its register file:

processor = register → value

• The whole parallel architecture can then be modelled by
a list of processors and a shared memory:

architecture = memory × processor list

• The global state advances by any non-halted processor
executing a primitive atomic instruction.

Verifying Multiple Compare and Swap – Joe Hurd – p.4/7

Parallel Architecture: Instruction Set

An instruction corresponds to a primitive atomic operation:

instruction =

NOP

| UP of value × register
| RD of register × register
| WR of register × register
| CAS of register × register × register × register
| ALLOC of N× register
| MB

Some memory models (such as the Alpha) use memory barrier
(MB) instructions to impose an ordering on accesses.

Verifying Multiple Compare and Swap – Joe Hurd – p.5/7

The CAS(n) Algorithm

• A case study to investigate verification in our model.

• CAS(n) stands for Multiple Compare And Swap:

if the n memory addresses a1, . . . , an

contain the expected values x1, . . . , xn

then replace them with the values y1, . . . , yn

(and this must all happen atomically!)

• A fast CAS(n) algorithm was recently developed by
Harris, Fraser and Pratt in Cambridge.

• So far has led to:
• instruction macros to simplify programming;
• and a simulation engine to test arbitrary interleaving.

Verifying Multiple Compare and Swap – Joe Hurd – p.6/7

Conclusion

• We have laid out a formalization of a parallel
architecture in HOL.

• We’re working on case studies to develop techniques for
specification and verification for a simple instantiation.

• There’s scope for making the memory model more
realistic (c.f. Gordon’s model of the Alpha architecture),

• and also the processor instruction set (c.f. Fox’s model
of the ARM).

• The intention is that proofs completed for the simple
instantiation lift up to more realistic models (we’ll see).

Verifying Multiple Compare and Swap – Joe Hurd – p.7/7

	Introduction
	The Formalization Task
	Parallel Architecture: Overview
	Parallel Architecture: Instruction Set
	The CAS(n)
Algorithm
	Conclusion

