From bah.demba at ju.edu.sa Mon Feb 6 09:26:28 2017 From: bah.demba at ju.edu.sa (=?UTF-8?B?2YXZiNiz2Ykg2K/Zhdio2Kc=?=) Date: Mon, 6 Feb 2017 12:26:28 +0300 Subject: [metis-users] theorem prover Message-ID: Dear, I would like a theorem prover where I can add new tactics for proving properties of equational programs. I don't know if I can do it with metis, and if metis supports second order substitutions, many thanks, -- Moussa Demba -- *???? ????? ?????????* ?? ????????? ??????? ?? ??? ?????? ?????????? ??? ????? ????? ?? ??????? ???? ??????? ???? ?? ???????? ? ?? ????? ??? ??????? ???? ?? ???? ????? ????? ???? ??? ?? ??? ??? ??????? ??? ??????? ??? ?????? ??????????. ?????? ??? ?? ??? ??? ???????? ??????? ??? ?????? ??????????? ???????? ?????? ?????? ????? ???? ?????? ???? ??????? ?????? ??????????. ???? ????? ????? ??? ?? ????? ?? ????? ?? ????? ?? ????? ????????? ??? ??? ?????? ??????????. ?? ????? ????? ????? ?? ??????? ??????? ?? ?? ????? ????? ?? ?? ????? ?? ????? ???? ?????? ??? ?????? ?????????? . -------------- next part -------------- An HTML attachment was scrubbed... URL: From joe at leslie-hurd.com Tue Feb 7 18:02:12 2017 From: joe at leslie-hurd.com (Joe Leslie-Hurd) Date: Tue, 7 Feb 2017 10:02:12 -0800 Subject: [metis-users] theorem prover In-Reply-To: References: Message-ID: Hi Moussa, Metis is an automatic theorem prover that takes as input some axioms and a conjecture in first order logic, and tries to prove the conjecture from the axioms. It uses a fixed strategy, and it's not easy to extend it with new proof tactics.* For your application I would recommend looking at one of the HOL family of theorem provers, such as HOL Light: https://github.com/jrh13/hol-light Good luck with your project, Joe [*] However, it's not impossible, as the MetiTarski project shows: https://www.cl.cam.ac.uk/~lp15/papers/Arith/ 2017-02-06 1:26 GMT-08:00 ???? ???? : > Dear, > I would like a theorem prover where I can add new tactics for proving > properties of equational programs. I don't know if I can do it with metis, > and if metis supports second order substitutions, > many thanks, > -- > Moussa Demba > > > > ???? ????? ????????? > > ?? ????????? ??????? ?? ??? ?????? ?????????? ??? ????? ????? ?? ??????? > ???? ??????? ???? ?? ???????? ? ?? ????? ??? ??????? ???? ?? ???? ????? > ????? ???? ??? ?? ??? ??? ??????? ??? ??????? ??? ?????? ??????????. ?????? > ??? ?? ??? ??? ???????? ??????? ??? ?????? ??????????? ???????? ?????? > ?????? ????? ???? ?????? ???? ??????? ?????? ??????????. ???? ????? ????? > ??? ?? ????? ?? ????? ?? ????? ?? ????? ????????? ??? ??? ?????? ??????????. > ?? ????? ????? ????? ?? ??????? ??????? ?? ?? ????? ????? ?? ?? ????? ?? > ????? ???? ?????? ??? ?????? ?????????? . > > > _______________________________________________ > metis-users mailing list > metis-users at gilith.com > http://www.gilith.com/mailman/listinfo/metis-users >